
Recursive Penalized Least Squares Solution for
Dynamical Inverse Problems of EEG Generation

Okito Yamashita,1* Andreas Galka,2,3 Tohru Ozaki,1,3 Rolando Biscay,4

and Pedro Valdes-Sosa5

1Graduate University for Advanced Studies, Tokyo, Japan
2Institute of Experimental and Applied Physics, University of Kiel, Kiel, Germany

3Institute of Statistical Mathematics, Minami-Azabu, Tokyo, Japan
4University of Havana, Ciudad Habana, Cuba

5Cuban Neuroscience Center, Ciudad Habana, Cuba

� �

Abstract: In the dynamical inverse problem of electroencephalogram (EEG) generation where a specific
dynamics for the electrical current distribution is assumed, we can impose general spatiotemporal
constraints onto the solution by casting the problem into a state space representation and assuming a
specific class of parametric models for the dynamics. The Akaike Bayesian Information Criterion (ABIC),
which is based on the Type II likelihood, was used to estimate the parameters and evaluate the model. In
addition, dynamic low-resolution brain electromagnetic tomography (LORETA), a new approach for
estimating the current distribution is introduced. A recursive penalized least squares (RPLS) step forms
the main element of our implementation. To obtain improved inverse solutions, dynamic LORETA
exploits both spatial and temporal information, whereas LORETA uses only spatial information. A
considerable improvement in performance compared to LORETA was found when dynamic LORETA
was applied to simulated EEG data, and the new method was applied also to clinical EEG data. Hum. Brain
Mapp. 21:221–235, 2004. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

Measurements of electromagnetic fields on the scalp
surface provide valuable information about underlying
brain dynamics. Electroencephalograms (EEGs) are ob-

tained by measuring the electrical potential on several
scalp surface locations. It is commonly believed that these
potentials are generated by electrical currents in the ex-
tracellular media, resulting from electrical and chemical
activity of neurons.

There is considerable interest in noninvasive localization of
electrical generators in the brain. The attempt to estimate these
generators, based on EEG measurements, is an example of an
inverse problem. The main difficulty in solving this inverse
problem arises from the fact that the EEG observations do not
contain sufficient information to precisely reproduce these gen-
erators. For this reason, the solution of the inverse problem (i.e.,
the inverse solution) will be non-unique, because a given set of
EEG measurements will have an infinite number of possible
inverse solutions consistent with the measurements. Addi-
tional physiological or physical information about the genera-
tors is needed to identify a unique solution.
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A common approach to the EEG inverse problem is to
assume a distributed source model, which employs discreti-
zation of brain volume into a set of voxels, each of which is
considered to be the location of a current vector. To obtain a
unique solution, various constraints have been suggested
previously, such as optimal resolution [Backus and Gilbert,
1968; Grave de Peralta Menendez et al., 1997; Grave de
Peralta Menendez and Gonzalez Andino, 1999], L2 mini-
mum norm [Hämäläinen and Ilmoniemi, 1984], L1 minimum
norm (called selective minimum norm) [Matsuura and Ok-
abe, 1995], and maximum spatial smoothness, called low
resolution brain electromagnetic tomography (LORETA)
[Pascual-Marqui et al., 1994].

Relative advantages and disadvantages of these ap-
proaches have been discussed previously from a purely
spatial point of view [Grave de Peralta Menendez and
Gonzalez Andino, 2002; Pascual-Marqui, 1999; Pascual-Mar-
qui and Michel, 1994]. These approaches exclusively use the
information from one instantaneous measurement, i.e., the
set of voltage measurements obtained from various elec-
trodes at one single instant of time, whereas EEG measure-
ments clearly have temporal structure.

Recently, temporal constraints have been considered for
various applications related to inverse problems. In the anal-
ysis of electrocardiograms (ECG), an algorithm has been
proposed for solving large-scale least squares problems
based on multiple constraints, including explicit spatial and
temporal constraints [Brooks et al., 1999]. For current distri-
bution reconstruction in the EEG inverse problem, or more
generally in the EEG/magnetoencephalography (MEG) in-
verse problem, other algorithms have been developed for
solving the above-mentioned large-scale least squares prob-
lem [Schmitt et al., 2001; Schmitt and Louis, 2002a,b]. Inverse
problems arising in analysis of data obtained by electrical
impedance tomography (EIT) and single photon emission
tomography (SPET) have been formulated as state estima-
tion problems [Kaipio et al., 1999; Karjalainen et al., 1997;
Vauhkonen et al., 2001]; the use of Kalman filtering and
Kalman smoothing has been suggested for obtaining esti-
mates of the state. The introduction of a temporal constraint
into the EEG/MEG inverse problem by employing a time
window and Gaussian kernels has been suggested by Phil-
lips et al. [2002].

Temporal constraints, as used previously, refer only to the
aspect of temporal smoothness. We consider a more general
variant of temporal constraints by regarding time-depen-
dent EEG measurements as reflecting generators that evolve
according to some dynamics, a problem called the dynamical
inverse problem. It will be possible to express explicitly the
spatiotemporal constraints as part of the system equation
within the state space representation by formulating the
dynamical inverse problem of EEG generation as a state
estimation problem. In particular we emphasize the appli-
cation of the established procedures of statistical modelling:
they require us to assume a class of parametric models and
to compare these models using likelihood as a criterion.

In principle, state estimation and model comparison could
be implemented using Kalman filtering. Due to the high
dimensionality of state (corresponding to the high voxel
number), however, the direct application of conventional
Kalman filtering to the EEG inverse problem is impractica-
ble. We introduce a simple and computationally efficient
estimation procedure based on the recursive penalized least
squares (RPLS) method. In addition, we employ the Akaike
Bayesian Information Criterion (ABIC) [Akaike, 1980a,b] as
a statistical criterion for estimating the regularization pa-
rameter and for comparing models. As a result, we obtain
dynamic low-resolution brain electromagnetic tomography
(DynLORETA), a new algorithm for estimating inverse so-
lutions from EEG time series. DynLORETA combines the
spatial smoothness constraint of the LORETA method with
additional dynamical constraints.

After a brief review of the forward problem of EEG gen-
eration, the dynamical inverse problem, as compared to the
instantaneous inverse problem, is introduced. Then we re-
view LORETA and introduce DynLORETA; as a simple
approach to the estimation of generators the RPLS method is
proposed. A simulation study is used to compare Dyn-
LORETA with (instantaneous) LORETA and the Dyn-
LORETA method is applied also to clinical EEG data.

The following notation is used throughout this article: the
transpose of a matrix A is denoted by A�, and a n � n
identity matrix is denoted by In. For a vector x and a positive
definite matrix C, we define �x�C � x�C�1x. The L2 norm of a
vector x is denoted by �x�, corresponding to the case of C
being an identity matrix.

Forward Problem

The relationship between scalp surface EEG measure-
ments and the primary current density resulting from neu-
ronal activity is described by the equation

Y � KJ � ε. (1)

In equation (1), Y denotes a vector of length d that contains
the EEG measurements of scalp electric potential differences
at d electrodes. J � (j�1, . . . j�Nj)� denotes a vector of length D
� 3Nj, which contains the current density vectors
jv � (jxv, jyv, jzv),(v � 1, . . . , Nj) at Nj voxels in the brain. The
matrix K, linking the current density J with the measure-
ment Y, is called the lead field matrix. It can be calculated by
applying Maxwell’s equations to a particular head model
[Nunez, 1981]. The vector � is an additive random element
representing unmodeled effects such as observation noise.
The forward problem consists of calculating the measure-
ment Y from given current density J.

Inverse Problem

The inverse problem is defined the estimation of current
density J from given measurement Y and constitutes an
ill-posed problem, because the number of scalp electrodes is
much smaller than the number of voxels for which the
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current density has to be estimated. We therefore need to
impose additional constraints as prior knowledge. In partic-
ular, we call the inverse problem, as formulated by equation
(1), the instantaneous inverse problem, because only the mea-
surement at one single time point is used to estimate J.

The definition of dynamic(al) inverse problems was first
discussed explicitly by Schmitt and Louis [2002a]. They de-
fined the instantaneous (static) inverse problem as follows:
“The properties J of the examined object do not change
during the measuring process. Thus, we have to solve K J
� Yi for all i.” On the other hand, they defined the dynam-
ical inverse problem as follows: “The examined object is
allowed to change during the measuring process and we
have to solve KJi � Yi for all i.” Because the term “dynamical
inverse problem” was used to describe broadly any time-
varying situation, without reference to particular variations
in time resulting from an actual dynamical evolution, the
term “nonstationary inverse problem” may seem more suit-
able for their definition.

We use the term “dynamical inverse problem” for a
slightly more restricted situation, which is defined as fol-
lows: “Solutions of a dynamical inverse problem have to be
in agreement with a twofold set of restricting information,
represented by the observation equation for all time points
considered, Yt � KJt � εt (t � 1, 2,. . .), and by some pre-
specified dynamics about Jt, Jt�1, Jt�2, . . . .” On the other
hand, we define the “instantaneous inverse problem” as
follows: “Solutions of an instantaneous inverse problem
have to be in agreement with a twofold set of restricting
information, represented by the observation equation at one
fixed time point Y � KJ � ε, and prior knowledge about J.”
In our definition, we impose an explicit assumption for the
time course evolution of Jt to simplify the mathematical
formulation of the problem.

In the instantaneous inverse problem, the solution reflects
only an instantaneous observation Yt, whereas in the dy-
namical inverse problem it reflects a sequence of temporally
successive observations Yt, Yt�1 · · · such that some dynamics
of the generator are imposed. As shown in Figure 1, the
dependence of Yt on the evolution of Jt is considered explic-
itly in the dynamical inverse problem. If Jt evolution does
not follow any dynamics, the dynamical inverse problem
becomes equivalent to the instantaneous problem, i.e., be-
comes a generalization of the instantaneous problem.

MATERIALS AND METHODS

LORETA

LORETA was suggested first by Pascual-Marqui et al.
[1994] to overcome the inability of previous approaches to
correctly localize the 3-D solution spaces. As prior knowl-
edge, LORETA imposes a spatial smoothness constraint
onto the solution J. This spatial smoothness constraint is
expressed using the (3-D discretized) Laplacian matrix L

[M]ij � � 6 (i � j)
�1 (j is a neighbor of i)
0 (otherwise)

L �
1
6 �M R I3)

The ith row vector of L acts as a discrete differentiating
operator by forming differences between the nearest neigh-
bors of the ith voxel and ith voxel itself.

The solution of LORETA is obtained by minimizing a
linear mixture of a weighted norm �LJ� and the residuals of
the fit according to the observation equation. By assuming a
Gaussian distribution � � N(0, 	2C�) with known covariance
structure C� for the measurement noise in equation (1), the
objective function of LORETA becomes

E(J) � �Y � KJ�Cε
2 � 
2�LJ�2, (2)

where the parameter 
, called the regularization parameter,
expresses the balance between fitting the model and the
prior constraint of minimizing �LJ�. The solution of this
minimization problem for a given 
 is obtained by

Ĵ � (K�Cε
�1K � 
2L�L)�1K�Cε

�1Y.

Dynamical LORETA

Dynamical constraint

Pioneering work on obtaining dynamical inverse solu-
tions with spatial and temporal smoothness constraints has
been presented by Schmitt et al. [2001] for the EEG inverse
problem. They formulated the spatial smoothness constraint
by using the Laplacian operator and the temporal smooth-
ness constraint by using a time-domain differencing opera-
tor. Their temporal smoothness constraint can be interpreted
as assuming a random walk model Jt � Jt�1 � �t for the
dynamics of Jt. In addition to the spatial smoothness con-

Figure 1.
Schematic comparison between the instantaneous inverse prob-
lem (top) and the dynamical inverse problem (bottom). Sources
within brain and EEG observations represented by rectangles and
circles, respectively. Arrows represent the flow of information, as
assumed by the underlying model.
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straint, a more general class of dynamical constraints is
employed for DynLORETA.

Similar to that introduced in Schmitt et al. [2001], an
objective function containing the spatial and temporal
smoothness constraints is defined:

E(Jt) � �Yt � K Jt�Cε
2 � 
1

2�LJt�
2 � 
2

2�L(Jt � Jt�1)�2. (3)

Interactions between neighboring voxels can also be taken
into account by including the Laplacian matrix L into the
third term of equation (3), and this step considerably re-
duces the computational expenses.

By introducing a new parameter � that represents a bal-
ance between the second and third terms of equation (3), we
can combine the two penalty terms and obtain a more com-
pact expression:

E(Jt) � �Yt � K Jt�Cε
2 � 
2�(1 � �)LJt � �L(Jt � Jt�1)�2

� �Yt � K Jt�Cε
2 � 
2�L(Jt � �Jt�1)�2

� �Yt � K Jt�Cε
2 � 
2�Jt � �Jt�1�(L�L)�1

2 . (4)

The objective function equations (3) and (4) are not equiva-
lent mathematically; however, equation (4) can be regarded
as a different way of imposing these two kinds of con-
straints.

To rewrite this objective function in the form of a statisti-
cal model, from equation (4) we obtain the state space rep-
resentation given by

observation: Yt � K Jt � εt εt � N(0, 	2Cε) (5)

system: Jt � �Jt�1 � �t �t � N(0, 
2 (L�L)�1) (6)

Equations (5) and (6) represent the observation equation
and the system equation, corresponding to the first and
second term of equation (4), respectively. An important
advantage of state space representations is that a more gen-
eral dynamical model can be designed by changing the
system equation. For example, a more complex dynamical
model can be considered that also includes previous states
beyond the first lag and allows for interactions between
generators on different voxels:

Jt � �
i�1

p

Ai Jt�i � �t. (7)

where Ai (i � 1, . . . , p) are D�D matrices. Whereas equation
(6) represents the case of very simple dynamics, various
interesting dynamics can be modeled by equation (7), dis-
playing features such as spatial heterogeneity, local neigh-
bor interaction, etc.

The state space representation with very general dynam-
ics in the system equation is given by:

� Yt � KJt � εt εt � N(0, 	2Cε)
Jt � ft(Jt�1, . . . , Jt�p,S) � �t �t � N(0, 
2(L�L)�1)

(8)

where S denotes exogenous variables and can model some
external force influencing the brain. The function ft( � ) may
be specified as linear, as in the case of equation (7), or may
be taken as nonlinear or time-dependent.

Three key points should be emphasized. First, the covari-
ance structure of the system noise �t should be given by
(L�L)�1. It is expected that spatial smoothness of Jt will be
inherited from instantaneous LORETA. Second, as stated
already, the model is written in a state space representation.
In principle, it is possible to carry out optimal inference
about Jt by employing the Kalman filter or the extended
Kalman filter [Aoki, 1987; Durbin and Koopman, 2001;
Jazwinski, 1970; Kitagawa and Gersh, 1996]. Third, the kind
of dynamics assumed depends on the analyst. Because there
are many possible solutions corresponding to different dy-
namical models, the resulting solutions should be evaluated
by some statistical criterion, such as ABIC.

Approximate estimation

As mentioned above, in principle, we could obtain the
estimate of Jt(t � 1, . . . , T) using Kalman filtering. In the
least squares case, the filtered estimator Jt�t(t � 1, . . . , T)
obtained by Kalman filtering is the best possible estimator
based on past and current observations. In the 3-D dis-
cretized inverse problem, however, the dimension D of the
state Jt is three times the number of voxels (typically several
thousand). The practical application of Kalman filtering to
such a very high-dimensional state vector would therefore
be very demanding (or even impossible) in terms of com-
putational time and memory consumption (e.g., due to the
need to compute and store dense matrices of size D�D). To
overcome this difficulty, it is necessary to design suitable
approximations of the standard Kalman filtering approach.
Galka et al. [2002] presented a new approach to spatiotem-
poral Kalman filtering that renders this high-dimensional
filtering problem tractable. In the present work, we intro-
duce a different, very simple estimation procedure that re-
quires only minor modification of instantaneous LORETA.
This procedure is termed the recursive penalized least
squares (RPLS) solution.

For notational simplicity, we assume that the function ft(�)
in equation (8) is linear and depends only on the states of the
generators at the previous time step:

ft(Jt�1, . . . , Jt�p,S) � AtJt�1 (9)

where At denotes a known matrix of size D�D. The assump-
tion of linearity, however, is not essential for the RPLS

� Yamashita et al. �

� 224 �



solution. The practical estimation procedure is discussed in
detail below.

An initial estimate (for t � 1) of the state J1 can be obtained
by any approach for solving the instantaneous inverse prob-
lem. For t � 2,3, . . . , T, we can obtain an estimate of Jt by
recursively solving the penalized least squares problem

Ĵt � arg min
Jt

��Yt � K Jt�Cε
2 � 
2�Jt � AtĴt�1�(L�L)�1

2 � (10)

where Ĵt�1 is the estimate obtained in the previous step. The
solution of equation (10) is given by

Ĵt � (K�Cε
�1 K � 
2L�L)�1(K�Cε

�1Yt � 
2L�LAtĴt�1) (11)

Direct computation of this expression is numerically imprac-
ticable, however, because a large matrix of size D�D needs
to be inverted; here, D is the dimension of the state. By
appropriate variable transformation, a numerically more
easily accessible solution may be obtained. In addition, this
transformation clearly demonstrates the relationship be-
tween the RPLS method and Kalman filtering (see Appendix
A).

We start from the following variable transformations:

�t � Jt � AtĴt�1 (12)

rt � Yt � KAtĴt�1 (13)

where �t and rt correspond to system noise and innovation
(1-step ahead prediction error), respectively. The objective
function of equation (10) can be rewritten as follows:

E(�t) � �rt � K�t�Ct
2 � 
2�L�t�

2 (14)

An estimate of Jt can then be obtained by

�̂t � T(
)rt (15)

Ĵt � AtĴt�1 � �̂t (16)

where we have defined

T(
) � (K�CεK � 
2L�L)�1K�Cε
�1 (17)

� L�1V diag� si

si
2 � �2�U�C�

�1/2 (18)

Here, U, diag(si), V are d � d, d � d and D � d matrices ob-
tained from the singular value decomposition (SVD) of
Cε

�1/2KL�1 [Mardia et al., 1979]. Computation of equation (18)
is not as demanding as the computation of equation (11),
because in equation (18) the large matrix to be inverted does

not depend on 
, such that this inversion needs only to be
carried out once, whereas in equation (11) the inversion has
to be carried out repeatedly during the process of finding an
optimal 
 value. A similar remark applies to the SVD of
Cε

�1/2KL�1 that also needs to be computed only once, because
these three matrices are known.

Estimating regularization parameter �

The regularization parameter 
 should be chosen in an
objective way, because the inverse solution will depend
sensitively on this parameter. Various methods, such as the
generalized cross-validation (GCV) criterion [Wahba, 1990]
and the L-curve method [Hansen, 1992, 1994] have been
employed for choosing the regulation parameter. In the
present work, we propose to employ ABIC [Akaike, 1980a,b]
for estimating this parameter, because this criterion can be
applied not only for selecting the regularization parameter,
but also for the purpose of model comparison.

ABIC is defined as

ABIC � �2l(II)(�, �) � 2N,

where N is the number of hyperparameters in the model and
l(II)(�,�) is the likelihood of the hyperparameters in the con-
text of empirical Bayesian inference, called Type II log-
likelihood. If there are unobservable variables in the model,
the Type II likelihood can be obtained by averaging the joint
distribution of all variables, both observable and unobserv-
able, over the unobservable variables:

l(II)(�, �) � log � p(Y1, . . . , YT, J1, . . . , JT; �, �)dJ1 . . . dJT (19)

where Yt are the observable and Jt the unobservable vari-
ables, 	 and 
 are hyperparameters.

It is very difficult to calculate analytically this multiple
integral for the dynamical inverse problem. Equation (19)
can therefore be approximated by the sum of Type II log-
likelihoods at each time point, l(II)(�, �). Because the inference
(if interpreted from the Bayesian viewpoint) in the RPLS
method is based on p(rt��t; �) and p(�t; �) as likelihood and
prior distribution, respectively (compare equations [12] and
[13]), the pointwise Type II log-likelihood based on rt is
given by

lt
(II)(�, �) � log � p(rt��t; �)p(�t; �)d�t. (20)

Then l(II)(	, 
) is approximated by the summation of
lt
(II)(�, �). This approximation is justified if the innovations rt

(t � 1, . . ., T) are serially independent with respect to their
distributions p(rt).
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If p(rt��t; 	) and p(�t; 
) are assumed to be Gaussian, we can
analytically calculate this integral and obtain (�2) times the
pointwise Type II log-likelihood:

� 2lt
(II)(	, 
) � d log 	2 � �

i�1

d

log
si

2 � 
2


2 �
1
	2 �

i�1

d

r̃i,t


2

si
2 � 
2

(21)

where r̃i,j is the ith component of the vector U�C�
�1/2rt (see

Appendix B for detail). Here, the hyperparameter 
 was
been replaced by 
 � 	/
. A constant term has been ignored
in equation (21). ABIC can then be expressed by

ABIC(	, 
) �Td log 	2 � T �
i � 1

d

log
si

2 � �2

�2

�
1
�2 �

t�1

T �
i�1

d

r̃i,t


2

si
2 � 
2 � 2N. (22)

Estimates of 	̂ and 
̂ can be obtained by minimizing this
expression, and the resulting minimum value of ABIC can
be employed for model comparison.

If a parametric model of the dynamics is assumed, this
model will contain unknown parameters �, which have to be
estimated. This can be done by minimizing ABIC, as given
by equation (22), but the innovations (1-step prediction er-
rors) rt now depend on these parameters, such that ABIC(	,

) becomes ABIC(	, 
, �). In our implementation, this opti-
mization is carried out by the simplex method, as provided
by the “fminsearch” function of Matlab.

RESULTS

For the calculations in the simulation study and analysis of
real EEG data, the following practical settings were chosen: the
lead field matrix K was calculated with a three-shell head
model [Riera and Fuentes, 1998]; a brain model derived from
the average probabilistic magnetic resonance imaging (MRI)
atlas produced by the Montreal Neurological Institute [Mazzi-
otta et al. 1995] was employed; and the voxel discretization
resolution was 7 mm, resulting in a total of 8,723 voxels. Gen-
erators were assumed to be located only within gray matter,
reducing to 3,433 the number of voxels considered. The num-
ber and locations of EEG electrodes followed the standard
10-20 system.

Simulation Example

To compare inverse solutions obtained by LORETA and
DynLORETA, a simulation experiment was carried out. We
generated a time series of T � 300 observations from a AR(2)
model of voxel dynamics, including nearest-neighbor inter-
actions, as describe by

Yt � KJt��t

Jt �(a1ID � b1L)Jt�1 � (a2ID � b2L)Jt�2�	t

var(εt) � 	2Id, var(�t) � 
2(L�L)�1,

where the parameters were chosen as �a1, a2, b1, b2, �, �) �
(1.82, �1.00, 0.05, 0.00, 0.03, 0.01), and the vectors of initial
current densities J0, J�1were chosen so that two extended
sources of activity were created, one in the occipital region
and one in the cingulate gyrus. Figure 2 shows the EEG
observations Y1, . . . , YT corresponding to the simulated
J1, . . . , JT with respect to right-ear mastoid reference. A sta-
tionary oscillation can be seen at most electrodes, except
those located within the frontal region. A spatial represen-
tation of J0 is shown in Figure 3 (top left).

From these observations, estimates of sources were calcu-
lated using the following three methods and conditions:
DynLORETA with unknown dynamical parameters and
known true initial current vectors (denoted by [D]); Dyn-
LORETA with unknown dynamical parameter and initial
current vectors based on LORETA inverse solutions (de-
noted by [DL]); and instantaneous LORETA (denoted by
[L]).

For each method, both ABIC and GCV were used to
estimate the regularization parameter 
, and dynamical pa-
rameters of methods [D] and [DL] were estimated by mini-
mizing equation (22). The resulting estimates and the corre-
sponding values of ABIC and GCV are shown in Table I. The
results displayed in the table demonstrate that estimating 

using the ABIC criterion is as good as using the computa-
tionally more intensive GCV approach.

In Figure 3, we show for time points t � 19 and t � 120 the
spatial distributions of absolute values of local current vec-
tors for the simulation (“truth”) and for inverse solutions
obtained by [D], [DL], and [L]. It can be seen that [D], [DL]
and [L] successfully reproduced the occipital activity source,
although [L] considerably underestimated the amplitude at
the center of this source. In addition, [L] completely failed to
reproduce the independent source in the cingulate gyrus,
which was well reconstructed by [D]. [L] instead produced
spurious activity in the temporal region. For t � 120, [DL]
also failed to reproduce the source in the cingulate gyrus,
which reflected the rapid decay of the estimated dynamics
(compare the corresponding subfigure in Fig. 4).

In Figure 4, the same results are presented for the time
domain. For two specific voxels chosen from the occipital
area and the cingulate gyrus, the corresponding time series
are shown for absolute values of current vectors for simu-
lation and inverse solutions obtained by [D], [DL], and [L].
It can be seen that the solution with [D] coincided very well
with the simulated time series for both voxels; this success
was due to accurate dynamical parameter estimates (see
Table I). With respect to the main oscillation, [DL] repro-
duced qualitatively the behavior of the simulated time series
for both voxels. Deviations from the simulated time series
increased with time, however, reflecting the use of inaccu-
rate dynamical parameter estimates. Although to some ex-
tent [L] also reproduced oscillations for both voxels, this
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solution completely failed to reproduce their amplitudes
correctly. Furthermore, [L] lacked temporal smoothness, a
consequence of the incapability of LORETA to discriminate
between dynamical and observation noise, a weakness of
instantaneous inverse solutions noted previously by Schmitt
et al. [2001].

The goodness of solutions obtained by the three methods
can be compared. As can be seen in Table I, there is a
succession of [D], [DL] and [L] with respect to increasing
values of ABIC. From the viewpoint of model comparison,
this result shows that solution of [D] was better than that of
[DL], which was better than that of [L]. ABIC, however, is of
value only as a relative measure. The difference between the
ABIC values of two models has the interpretation of a ratio
of probabilities, but the values themselves have no mean-
ingful interpretation.

Compared to [L], [DL] provides considerably better in-
verse solutions, even though there remained an underesti-
mation of the amplitudes from true sources, resulting from
inaccurate initial state estimates and consequently inaccu-
rate estimated dynamics. This is an important result, be-
cause in contrast to [D], [DL] is applicable to the analysis of
real data. The superior results obtained by [D], however,
indicate that further improvements can be achieved in fu-
ture work by adjusting the estimation procedure for the
initial state.

Real Data Analysis

A clinical EEG recording recorded from a healthy child in
awake state with closed eyes is shown in Figure 5. An
oscillation representing the characteristic � rhythm is visible

at occipital electrodes O1 and O2. For analysis of this data
set, a regional homogeneous AR(2) model is employed,
given by

Yt � KJt��t

Jt

�� a1Jt�1


 � a2Jt�2

 � 	t


 
 �G
b1Jt�1


 � b2Jt�2

 � 	t


 
�G

var�εt)�	2Id, var��t) � 
2(L�L)�1.

The dynamics within a certain region G is assumed to
differ from the dynamics within the remaining part of brain.
We have chosen the region G as a sphere of radius 30 mm
centered within the occipital lobes; the center was chosen
according to a LORETA solution of the same data.

In Figure 6, the time series and periodograms of the x,y,z
components of the current vector from a particular voxel
inside G are shown. In each figure, the time series and
periodograms estimated by both LORETA and Dyn-
LORETA are plotted. Each component of the time series
provided by DynLORETA shows clearer � oscillations com-
pared to that in the LORETA time series. In the perio-
dograms, this difference can also be seen in the range of the
� rhythm (around 9 Hz). In addition, the time series pro-
vided by DynLORETA have higher amplitude than do the
time series provided by LORETA; this effect had also been
shown in the previous simulation experiment.

Estimation of the dynamical parameters �a1, a2, b1, b2) by
numerical optimization provides the estimates (1.95, �0.99,

Figure 2.
Simulated EEG observations at 19 standard
electrode positions of the 10/20-system vs.
simulation time, according to the simulation
example described in the text.
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Figure 3.
Spatial distributions of absolute values of local current vectors for
the simulation (TRUE) and for the inverse solutions obtained by
DynLORETA with known initial state [D], by DynLORETA with
unknown initial state [DL], and by LORETA [L]. Top left: Initial

state of the simulation. Middle, right: Inverse solutions at time
points t � 19 and t � 120, respectively. Note that color scale of
[L] is different from the color scale of the other three rows.
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1.54, �0.56). The parametric power spectrum [Shumway,
2000], as obtained from the estimated AR parameters inside
G displays a peak around 8.3 Hz, whereas the power spec-
trum outside G does not display a peak, just a drop in power
toward higher frequencies. The peak at 8.3 Hz falls well
within the known range for � activity. These results illus-
trate that by DynLORETA, it is possible to make detailed
inferences about the dynamics of generators of EEG time
series.

In Figure 7, evolution of spatial distribution of a current
vector component, as estimated by DynLORETA and
LORETA, is illustrated for six consecutive points of time
(with a time shift of 0.0234 sec). The figure displays the
current vector component that corresponds to the radial
direction of spherical coordinates, with the origin at the
center of the head. DynLORETA and LORETA solutions
both provide two main sources that are negatively corre-
lated in the left and right occipital region. These two sources
can be considered generators of � rhythm [Rodin and Rodin,

1995; Valdés-Sosa et al., 1992]. The solution obtained by
DynLORETA shows much more focused sources in the oc-
cipital region, however, whereas the LORETA solution
shows spurious activities in other regions, such as the tem-
poral lobes and around the vertex (electrode Cz). In addi-
tion, the quality of the inverse solutions provided by
LORETA and DynLORETA can be assessed by comparing
their corresponding values of ABIC, which are 1.76 � 105

and 1.24 � 105, respectively. Comparison of these ABIC
values proves that the solution provided by DynLORETA is
superior to that provided by LORETA.

DISCUSSION

We have addressed the inverse problem of estimating
generators of EEG recordings, with particular emphasis on
the use of dynamical constraints, i.e., the dynamical inverse
problem of EEG generation. We studied the dynamical in-
verse problem of EEG generation. By formulating the dy-

TABLE I. Estimates of regularization parameter � and dynamical parameters, and corresponding values of ABIC
and GCV for the simulation data

DynLORETA [D] DynLORETA [DL] LORETA [L]


GCV 0.256 0.095 0.0076

ABIC 0.259 0.100 0.0065
GCV 2.58 � 10�6 2.69 � 10�6 3.71 � 10�6

ABIC �4.18 � 104 �3.95 � 104 �3.56 � 104

(â1, â2, b̂1, b̂2) (1.82, �1.00, 0.06, 0.008) (1.87, �1.05, �0.57, 0.58) �

These values are obtained by DynLORETA with known initial states [D], DynLORETA with estimated initial states [DL], and LORETA [L].

Figure 4.
Time series of absolute values of local current
vectors at two individual voxels, one from
occipital area (left) and one from cingulate
gyrus (right), vs. simulation time. Top to
bottom rows: Simulated time series and re-
sults for inverse solutions obtained by Dyn-
LORETA with known initial state [D], Dyn-
LORETA with unknown initial state [DL], and
by LORETA [L].
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namical inverse problem in a state space representation, we
can introduce general dynamical constraints into the system
equation.

In principle, the optimum solution of this state estimation
problem is given by Kalman filtering and Kalman smooth-
ing; however, due to the high dimensionality of state in the
EEG inverse problem, direct application of Kalman filtering
is very demanding (or even impossible) in terms of compu-
tational time and memory consumption. As an alternative,
we employed the RPLS method. The relationship between
the RPLS method and Kalman filtering is discussed in detail
in Appendix A.

As a practicable approach for finding solutions of the
dynamical inverse problem for given data without excessive
computational expense, we introduced a suitable method,
which we have called dynamical LORETA (DynLORETA),
because it is derived from the LORETA method for solving
the instantaneous problem. It is a crucial advantage of Dyn-
LORETA that by suitable choice of the system noise covari-
ance structure it inherits from LORETA the desirable feature
of maximum spatial smoothness.

On a PC with a clock rate of 2 GHz, the computation of
DynLORETA for an EEG data set consisting of 500 time
points takes a few hours, including optimization of several
hyperparameters. In contrast, for the same data set, the
computation of LORETA takes only a few seconds, includ-
ing optimization of the regularization parameter. This dif-
ference results from the higher number of hyperparameters
to be optimized in DynLORETA and the need to compute
for each time point t several additional multiplications and
summations of high-dimensional matrices within the state

space framework. To obtain inverse solutions of improved
quality, such a price in terms of high computational expense
has to be paid.

We have proposed the use of ABIC to estimating hyper-
parameters, especially the regularization parameter. It was
found in a simulation study that ABIC and GCV criteria
provide similar estimates. ABIC is valuable for model com-
parison, because it can be interpreted as the goodness of fit
of the model to the data. ABIC is a relative measure, and
although the value of ABIC itself has no meaning, the dif-
ference of ABIC between models can be used to evaluate the
models.

As a parametric model for the spatiotemporal brain
dynamics used in the simulation study, we employed a
AR(2) model including nearest-neighbor interaction. This
particular class of parametric models was useful for two
reasons: first, they can be interpreted as discretizations of
partial differential equations describing spatiotemporal
dynamical phenomena [Smith, 1985] and second, they can
be formulated using highly sparse matrices, which ren-
ders them appropriate for application to high-dimen-
sional problems.

In the simulation study, we demonstrated superior per-
formance of DynLORETA as compared to LORETA when
applied to data generated by dynamically evolving sources.
This success, however, depends essentially on the availabil-
ity of basic information about the underlying dynamics,
namely the form and parameters of the dynamical model. In
addition, better estimates of initial states in the RPLS
method are important for achieving substantial improve-
ments of the inverse solutions.

Figure 5.
Clinical EEG recording at 19 standard posi-
tions of the 10/20-system vs. time (obtained
from a healthy 8-year-old male child awake
with eyes closed). Vertical axis represents ob-
served voltages relative to the average refer-
ence.
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In an analysis of clinical EEG data, we employed a re-
gional AR(2) model characterized by the presence of differ-
ent dynamics inside and outside the occipital area. As a
result of DynLORETA, we observed two occipital sources
that are correlated negatively. We identified oscillations cor-
responding to � rhythm from the parameter estimates and
from the estimated time series at occipital voxels.

The main advantage of solutions provided by Dyn-
LORETA is that their temporal structure results explicitly
from a dynamical model. Although spatial features of the
LORETA solutions are inherited, additional improvements
in the solution become possible through incorporation of
temporal information. On the other hand, if the dynamical
model has not been chosen well, the DynLORETA solutions
tend to be very similar to the corresponding LORETA solu-
tions, because inappropriate dynamical constraints result in
very weak regularization.

The ideas and methods in the present work should be
developed further. Information from other brain-imaging
modalities (e.g., fMRI, near infrared spectroscopy) should be

incorporated into the estimation task, allowing the explora-
tion of physiologically more meaningful dynamics and ulti-
mately resulting in better inverse solutions. In addition,
suitable approaches for dimension reduction should be ap-
plied to the dynamical states. If this can be accomplished,
direct application of Kalman filtering will become feasible.
Lastly, more accurate estimation procedures should be de-
veloped. The RPLS method can be interpreted as an approx-
imation of Kalman filtering, but remains a rough approxi-
mation, thus it would be desirable to construct
computationally efficient estimation procedures that ap-
proach Kalman filtering more closely, even in the case of
high dimensional states.
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Figure 7.
Spatial distributions of current vector component corresponding to radial direction of spherical
coordinates for inverse solutions obtained from EEG data set in Figure 5. Top: Solutions estimated
by DynLORETA; bottom: solutions estimated by LORETA (both at 6 consecutive points in time).
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APPENDIX A

Relationship Between the RPLS Method and
Kalman Filtering

The estimation procedure of the RPLS method has the
same structure as known from Kalman filtering: first, the
innovation is calculated (equation [13]) using the previous
estimate (i.e., forming a prediction) and the current obser-
vation, then �t is calculated (equation [15], corresponding to
filtering) from the innovation. Let Jt�1�t�1 and Vt�1�t�1 denote
the filtered state estimate and the filtered state error vari-
ance, respectively, as provided by Kalman filtering at time t
� 1. At time t a new observation Yt becomes available, and
the state estimate is updated according to

Jt�t �AtJt�1�t�1 � �rt
� (23)
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� � �K�CεK � (	2ct�1AtPt�1A�t���2(L�L)�1)�1}�1K�Cε
�1

(24)

where � denotes the Kalman gain, and the innovation rt
� is

defined by rt
� � Yt � KAtJt�1�t�1. We denote the filtered

error variance by Vt�1�t�1 � ct�1Pt�1. In the RPLS method,
the equation corresponding to equation (23) is equation (16).
Obviously, in Kalman filtering �rt

� is the estimator of system
noise; the corresponding estimator is given by equation (15).
By comparison with equation (17) it can be seen readily that
the RPLS method becomes consistent with Kalman filtering
if ct�13 0. Although, according to equation (24), the Kalman
gain depends essentially on three components representing
system noise variance, observation noise variance, and the
uncertainty of the previous estimate, the RPLS method de-
pends explicitly on only two of these components, namely
system noise variance and observation noise variance. In
this sense, Kalman filtering can be regarded as a more gen-
eral algorithm than the RPLS method.

APPENDIX B

Calculation of type II Log-likelihood for LORETA

We show the detailed calculation of Type II log-likelihood
for LORETA, and the approximated Type II log-likelihood
for DynLORETA, can be obtained in the same way, by
replacing Yt by rt in equation (13).

From the view of Bayesian inference, the LORETA solu-
tion can be interpreted as maximum a posteriori (MAP)
solution with respect to likelihood and prior distribution,
respectively:

p�Yt�Jt; 	� � N�KJt, 	2Cε� (25)

p�Jt; 
� � N�0, 
2�L�L��1� (26)

Then the Type II log-likelihood of one fixed point of time,
defined by

lt
�II��	, 
� � log � p�Yt�Jt; 	�p�Jt; 
�dJt (27)

can be simplified as

p�Yt�Jt; 	�p�Jt; 
� � �2���d � D�/2 �	2Cε� � �1/2�

� �
2�L�L� � 1� � �1/2� exp� �
1

2	2 E�Jt; 
��
� �2���d � D�/2 �	2Cε� � �1/2�� 
2�L�L� � 1� � �1/2�

� exp� �
1

2	2 E�Ĵt; 
�� exp� �
1

2	2 �Jt � Ĵt��U�
��Jt � Ĵt�� ,

(28)

where

E�Jt; 
� 	 �Yt � KJt �Cε
2 � 
2�LJt �2

Ĵt 	 �K�CεK � 
2L�L� � 1K�Cε
� 1Yt

U�
� 	 K�CεK � 
2L�L

and 
 	
	



Because only the second exponential in equation (28) con-

tains the integrand Jt, the integral can be evaluated in closed
form as

� p�Yt�Jt; 	�p�Jt; 
�dJt

	 �2���d/2� �	2Cε� � �1/2� �
2�L�L� � 1� � �1/2� �	2U�
� � 1��1/2�

� exp � �
1

2	2 E�Ĵt; 
�� .

We then obtain (�2) times Type II log-likelihood as follows:

� 2lt
�II��	, 
� � log�	2Cε� �

1
	2 E�Ĵt; 
� � log

�
2�L�L� � 1�
�	2U�
� � 1� .

(29)

We have replaced the parameter 
 by 
 � 	/
 and constant
terms have been ignored. The second and third terms of
equation (29) can be simplified further by the singular value
decomposition of K� 	 Cε

� 1/ 2 KL � 1 � USV�. The second
term can be arranged as

E�Ĵt; 
� � ��I � K� �K� �K� � 
2I� � 1K� ��Cε
� �1/2� Yt�

2

�
2��K� �K� � 
2I� � 1K� �Cε
� �1/2� Yt�

2

� �U�I � S�S�S � 
2I� � 1S��Ỹt�
2 � 
2�V�S�S�
2I� � 1S�Ỹt�

2

� Ỹ�t diag� 
2

si
2 � 
2� Ỹt (30)

where Y� t � U�Cε
� 1/ 2Yt, and si is the ith singular value in the

matrix S. The third term can be simplified as

log
��L�L� � 1�

�
2�K�CεK � 
2L�L� � 1� � � log�
2�K� �K� � 
2I��1�

��log�
2(S�S � 
2I)�1� � �
i�1

d

log
si

2 � 
2


2 (31)

Substituting equations (30) and (31) into (29), we can finally
obtain (�2) times Type II log-likelihood as
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� 2lt
�II��	, 
� � d log 	2 � �

i�1

d

log
si

2 � 
2


2 �
1
	2 �

i�1

d

ỹi,t


2

si
2 � 
2

where ỹi,t is ith component of the vector Y� t. The hyperpa-
rameters 
, 	 can be obtained in such way that the function
�2lt

�II� will be minimized. Differentiating �2lt
�II� with respect

to 	2, the estimate of 	2 is provided by

	̂2 �
1
d �

i�1

d

ỹi,t


2

si
2 � 
2.

The regularization parameter 
 can be obtained by minimizing

� 2lt
�II��
� � d log 	̂2 � d � �

i�1

d

log
si

2 � 
2


2 .

Because in the case of LORETA, the probability densities
p�Yt, Jt; 	,
�, t � 1, . . . , T are serially independent, the
(�2) Type II log-likelihood based on T data points can be
obtained as follows:

� 2l�II��	, 
�

� � 2 log � p�Y1, . . . , YT, J1, . . . , JT; 	, 
�dJ1 . . . dJT

� � 2�
t�1

T

log � p�Yt�Jt; 	�P�Jt; 
�dJt

� Td log 	2 � T�
i�1

d

log
si

2 � 
2


2 �
1
	2 �

t�1

T �
i�1

d

ỹi,t


2

si
2 � 
2 .

� RPLS Solution for Dynamical Inverse Problems �

� 235 �


