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Impulse response function based on multivariate AR model can
differentiate focal hemisphere in temporal lobe epilepsy
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bstract

The purpose of this study is to propose and investigate a new approach for discriminating between focal and n
emispheres in intractable temporal lobe epilepsy, based on applying multivariate time series analysis to the disch
ackground brain activity observed in nocturnal electrocorticogram (ECoG) time series.
Five unilateral focal patients and one bilateral focal patient were studied. In order to detect the location of epileptic foc
ultivariate autoregressive (MAR) models were fitted to the ECoG data; as a new approach for the purpose of summariz
odels in a single relevant parameter, the behavior of the corresponding impulse response functions was studied and
y an attenuation coefficient.
In the majority of unilateral focal patients, the averaged attenuation coefficient was found to be almost always sign

arger in the focal hemisphere, as compared to the non-focal hemisphere. Also the amplitude of the fluctuations of the a
oefficient was significantly larger in the focal hemisphere. Moreover, in one patient showing a typical regular sleep c
ttenuation coefficient in the focal hemisphere tended to be larger during REM sleep and smaller during Non-REM slee
ilateral focal patient, no statistically significant distinction between the hemispheres was found.
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This study provides encouraging results for new investigations of brain dynamics by multivariate parametric modeling. It
opens up the possibility of relating diseases like epilepsy to the properties of inconspicuous background brain dynamics, without
the need to record and analyze epileptic seizures or other evidently pathological waveforms.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Temporal lobe epilepsy; Electrocorticogram (ECoG); Basic background activity; Multivariate autoregressive (AR) model; Impulse
response function; Attenuation coefficient; Detection of epileptic hemisphere

1. Introduction

The electroencephalogram (EEG) is the reflection
upon the scalp of the summed synaptic potentials of
millions of neurons (Lopes da Silva, 1987; Speckmann
and Elger, 1987). Depending on the presence of dif-
ferent cognition processes or diseases in brain, various
kinds of typical waveforms and patterns appear in the
EEG. In the field of epileptology, the EEG has been
found to be a useful tool for detecting those regions
that contain epileptic foci. In cases where unambiguous
localization is difficult, the EEG recorded at intracra-
nial electrodes is frequently investigated (Niedermeyer,
1987).

Recently, surgical treatment of temporal lobe
epilepsy has found widespread application. For the
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can provide essential information for the localization
of epileptic foci (Shimizu et al., 1992). However, since
these electrodes are usually implanted for less than 2
weeks, it is not always possible to record a typical
epileptic seizure during this period of time. Analysis
of inter-ictal spike discharges may provide additional
information, but not always can the focal hemisphere
be correctly identified from higher density of inter-
ictal spike discharges. Thus, it would be desirable
to develop new approaches for the analysis of EEG
and ECoG time series that are capable of extract-
ing relevant information from background brain ac-
tivity without any necessity for analyzing seizures or
spikes.

Already by visual inspection of inter-ictal ECoG,
it is possible to observe differences of the basic back-
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valuation of surgical indication for the treatment
f epilepsy, both imaging techniques (MRI and/or
PECT) and EEG recordings (including foramen
vale) are employed.

It is well known in physiology that there exists a
ronounced relationship between epileptic discharges

ground activity between hemispheres. So far there h
been only few studies that characterize the dynamic
the background activity of EEG or ECoG time series
epileptic patients. Within the framework of paramet
modeling, such analysis requires the explicit or impl
choice of a model class for the dynamics. One ha
nd sleep stages (Velasco et al., 1995). In most epilep-
ic patients, Non-REM sleep promotes the occurrence
f inter-ictal epileptiform electric discharges (spikes).
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choose between the two cases of linear or nonlinear dy-
namics, and also between the two cases of deterministic
or stochastic dynamics, such that altogether four basic
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Therefore, in many cases, the epileptic focal he
sphere can be detected by investigating spike rate
phase delays between channels in Non-REM slee
the other hand, there is only little spiking activity dur
REM periods (Montplaisir et al., 1987; Wieser, 199
Chokroveerty, 1994).

For the majority of patients, the laterality of t
epileptic focus or foci can be consistently determ
by using these sources of information. Howeve
is also known that not always a higher spike
will reliably indicate the epileptic hemisphere, and
difficult cases the analysis may yield ambiguou
contradictory results, such that further evaluatio
required prior to surgery. In such cases, the ele
corticogram (ECoG), recorded at subdural electro
classes can be distinguished. Among these classe
linear deterministic case can easily be discarded, s
it describes only a small number of very simple wa
forms (Hamilton, 1994).

In the last two decades, the class of nonlinear d
ministic dynamics (including “chaotic” dynamics) h
been employed frequently for the analysis of EEG
ECoG time series. A famous analysis approach,
plicitly anticipating this model class, is the estim
tion of the correlation dimension D2 (Grassberger an
Procaccia, 1983), which is interpreted as a meas
of neural complexity. A characteristic decrease of
(i.e. a neural complexity loss) in the focal hemisph
of epileptic patients has been reported (Lehnertz and
Elger, 1995; Weber et al., 1998).
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The main disadvantage of D2 as a measure for de-
scribing EEG/ECoG dynamics lies in the fact that the
assumption of determinism has to be regarded as inap-
propriate for brain dynamics. Furthermore, this mea-
sure has been found to be very susceptible to a variety
of imperfections in the data, such as noise and nonsta-
tionarities; a detailed study of these problems can be
found inGalka (2000).

Nonlinear stochastic models form the most general
model class, but this model class cannot be employed
directly without additional explicit assumptions. The
linear approximation to this general class (i.e. the
linear stochastic case) is widely known as a well-
defined and useful first-order approximation for gen-
eral nonlinear dynamics, deferring explicitly nonlinear
terms to higher orders of approximation. This model
class, represented by the well-known class of (lin-
ear) autoregressive (AR) models, has been applied to
EEG time series by various authors already in the
1970s (for a review of the early work, seeIsaksson
et al., 1981). Soon linear stochastic modeling was ex-
tended to the case of multivariate time series, such
that all available electrodes of EEG or ECoG record-
ings could be employed simultaneously (Gersch et al.,
1977; Akaike, 1981); the corresponding generalization
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epileptic patients. Certain phenomena in ECoG data,
such as spike-wave patterns, cannot be described well
within this model class, since for this task nonlinear el-
ements would be required (Miwakeichi, 2001); but this
does not represent a serious limitation of our approach,
since in this paper our interest lies exclusively in the
background dynamics and not in epileptiform wave
shapes.

We remark that the estimation of MAR models is
much less demanding in terms of computational time
and memory consumption than typical nonlinear meth-
ods, such as the estimation of D2; therefore, it can be
easily applied also to very long datasets, such as noc-
turnal ECoG data.

It is a characteristic problem of MAR models that
they may contain a comparatively large number of
model parameters, which cannot directly be employed
for the purpose of characterizing the dynamics. There-
fore, methods for further summarizing and condensing
the information contained in MAR models are required.
One approach consists of transforming the model to
frequency domain; then, causality and coherence can
be quantified through the noise contribution algorithm
or cross-spectral methods (Gersch et al., 1977; Akaike,
1981; Liberati et al., 1997). However, when employing

ctral
r of

dy-
this

e pro-
im-
will

me-
sed
han-

nd
inary
suf-

m-
odes
al
sults
and
rest-
these
f AR models is known as multivariate AR (MAR
odels. Several studies have employed MAR mo

ng of EEG/ECoG time series for purposes of spe
stimation, coherence analysis and information
uantification (Kaminski and Blinowska, 1991; Ga
t al., 1992; Franaszczuk and Bergey, 1998; Medv
nd Willoughby, 1999). There are also applicatio
f MAR modeling to the prediction of the effects
urgery on the EEG (Akiyama et al., 1995) and to
ierarchical decomposition of EEG/ECoG time se

nto source processes (Repucci et al., 2001). With re-
pect to data recorded from epileptic patients, mo
hese studies focused exclusively on analyzing th
al EEG.Hernandez et al. (1996)andMiwakeichi et al
2001) presented successful approaches to mod
pileptiform wave shapes by non-parametric mod
nd in this context,Miwakeichi et al. (2001)intro-
uced as a generalization structured non-param
odeling.
In the present study, we discuss the concep

odeling ECoG data recorded during sleep by
ar MAR models, in order to characterize dyna
al properties of focal and non-focal hemisphere
these techniques, still the number of resulting spe
parameters for each frequency will be of the orde
the number of EEG channels squared.

When attempting to investigate time-varying
namics from nocturnal ECoG by these models,
problem becomes even more severe. Therefore, w
pose to characterize the MAR model by using its
pulse response function. In the present study, we
feasibly summarize MAR models by a single para
ter, called attenuation coefficient, which will be ba
on averaging the impulse response function over c
nels.

In this paper, we will develop the modeling a
analysis approach and present results of a prelim
study based on sleep ECoG data from six patients
fering from temporal lobe epilepsy. While the nu
bers of available patients and of subdural electr
do not yet suffice for a full-scale study of clinic
usefulness, nevertheless the comparison of our re
with a more traditional measure, the spike rate,
with the corresponding hypnograms reveals inte
ing tendencies and encourages further work along
lines.
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2. Methods

2.1. Patient selection

Intracranial recordings of six patients with medi-
cally intractable temporal lobe epilepsy were studied
(two male and four female; age 25–45 years). All pa-
tients were candidates for neurosurgical treatment and
gave informed consent for nocturnal ECoG recording.

In all of these patients, the results of identifying
the focal hemisphere by imaging techniques (MRI
and/or SPECT) and EEG recordings (including fora-
men ovale electrodes) were either contradictory or
ambiguous, therefore invasive ECoG recordings were
employed.

Localization of the epileptic foci was carried out
by considering the overall results of clinical exami-
nations. The results are summarized inTable 1. For
conclusively discriminating focal and non-focal hemi-
spheres, the results of surgical treatment are most rel-
evant. Video-ECoG recordings were done in all cases;
all seizure ECoG recordings corresponded to clinical
seizures according to the simultaneous video record-
ings. Inter-ictal spike frequency was counted by visual
inspection of printouts of the clinical recordings.
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2.2. Data acquisition and spike detection

Subdural electrodes were attached to cortical areas
and the parahippocampal gyrus for the clinical purpose
of evaluating the foci of epileptic seizures. Specially de-
signed T-shaped sets of eight electrodes were attached
in order to record parahippocampal and basal tempo-
ral cortical activities from both hemispheres (Shimizu
et al., 1992) (Fig. 1). In this study, ECoG recorded from
these T-shaped sets of electrodes was analyzed. The
method of recording was bipolar; as shown in panel
B of Fig. 1, the number of channels was six on each
temporal lobe.

Polysomnographic recordings were also made in or-
der to evaluate sleep stages. In addition to ECoG also
EEG (at position Cz), oblique electrooculogram and
chin electromyogram were recorded. Sleep stages were
scored according to the standard Rechtschaffen and
Kales criteria (Rechtschaffen and Kales, 1968), and the
results were displayed in the usual form as hypnograms.

All signals were recorded either using a TEAC XR-
9000 28-channel FM analog tape recorder, a TEAC
SR-8000 recorder, or a SONY SIR-1000 32-channel
digital recorder. After 350 Hz low-pass filtering, the
recordings were subsampled to 150 Hz. For each pa-
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Histopathological examination showed abnor
results for all unilateral patients, in particular h
pocampal sclerosis (#1, #2, #3) and hippocampal
sis (#5, #6) were found. After temporal lobectomy f
of the five unilateral patients became seizure-free.
remaining unilateral patient (#3) continues to have
eralized tonic–clonic seizures after surgery, altho
the rate of seizures has been substantially reduced
one to three times per month to one to two times
year. Patient #5 had two foci in right mesiobasal
left inferior temporal gyrus (T3) areas. In this case
ECoG results indicated that all recorded seizures
inated from the right mesiobasal focus. For patien
according to the EEG the spike rate in the left he
sphere was higher than in the right, however, no c
abnormalities were found in MRI and SPECT. Fr
video-ECoG, it was gleaned that ictal discharges w
initialized ten times in the left mesial temporal lobe
nine times in the right. Therefore, the case of patien
was diagnosed as bilateral mesiotemporal epileps
summary, five unilateral focal patients (two left-sid
three right-sided) and one bilateral focal patient w
studied.
tient, 480 min of data was available.
For the purposes of this study, spikes were

tected by an automatic procedure, applied separ
to each channel, which will be briefly described n
The ECoG signal was segmented by a 10 ms sli
window. If the absolute value of the average of
ECoG signal within a segment exceeded a thres
of 100�V + 5σ (whereσ denotes the standard d
viation of the entire dataset for the chosen chan
this segment was labeled as a spike. The perform
of this method was evaluated by comparison w
the results of visual inspection by an expert. Twe
non-overlapping epochs (epoch length 16.38 s) w
consecutively selected from recordings of three s
stages, and spikes were counted for each indivi
epoch. If evaluated for all patients, sleep stages
epochs, we obtain for the comparison between a
matic and visual spike detection a correlation co
cient ofr = 0.80, which we consider sufficient for o
purpose.

For the purpose of estimating the time-depen
spike rate, individual spikes were counted for n
overlapping epochs of 1 min length; considering



F.M
iw
a
ke
ich

ie
ta
l./E

p
ile
p
sy

R
e
se
a
rch

Table 1
Patient profiles, summary of clinical examinations and outcomes of surgical treatment

Patient # 1 2 3 4 5 6

Age/sex 30/F 29/F 28/M 45/F 25/M 32/M

Seizure type BS, OA, GTS BS, OA, GTS LOC, GTCS BS, CPS MA BS, GCS, CPS

Scalp EEG (including
foramen ovale
electrode)

Bil. aT spikes (Rt.
> Lt.)

Bil. aT spikes Rt. aT spikes Bil. aT spikes (Lt.
> Rt.)

Bil. aT spikes Rt. aT spikes

ECoG
Ictal Lt. mesial temporal

(1 record)
Lt. mesial temporal
(4 records)

Lt./Rt. mesial temporal
(1/1 record); Lt. basal
temporal (6 records)

Lt./Rt. mesial
temporal (10/9
records)

Rt. mesial temporal
(8 records)

Rt. mesial
temporal (1 record)

Inter-ictal Lt. � Rt. Lt. � Rt. Rt. > Lt. No clear difference No clear difference Rt. > Lt.

MRI Lt. mesial temporal
sclerosis

Lt. mesial temporal
sclerosis

No abnormal finding Lt. mesial temporal
sclerosis (mild)

Arachnoid cyst in
the Rt. temporal
tip; Lt. T3
calcification

No abnormal
finding

SPECT Lt. MTL low Rt. MTL low No abnormal finding Lt. MTL low
(slight)

No abnormal
finding

Rt. MTL low

Foci Lt. mesial temporal Lt. mesial temporal Rt. temporal Bilateral mesial
temporal

Rt. mesiobasal, L
T3

t. mesial temporal

Operation LTL LTL RTL No operation RTL (additional
left T3 cortical
tube resection)

Histopathology Hippocampal
sclerosis

Hippocampal
sclerosis

Hippocampal sclerosis – Rt. hippocamp
gliosis; Lt.
temporal lobe
ganglioglioma

Seizure frequency after
operation

Seizure-free Seizure-free GTCS one to two times
per year CPS-free

– Seizure-free

M: male; F: female; BS: blank stare; OA: oral automatism; MA: motion arrest; LOC: loss of consciousness; GTCS: generalized tonic–clonic se:
CPS: complex partial seizure; Bil.: bilateral; Lt.: left; Rt.: right; aT: anterior temporal; (L/R)TL: (left/right) temporal lobectomy; T3: inferior temporal gy
lobe.
t. R
6
1
(2
0
0
4
)
7
3
–
8
7

77

RTL

us Hippocampal
gliosis

Seizure-free

izure; GTSgeneralized tonic seizure;
rus; MLT: mesian temporal
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Fig. 1. Electrode positions (A) and ECoG derivations (B). Note that electrode positions approximate, but do not precisely locate each described
gyrus. Bipolar recordings of ECoG were used. Six channels are corresponding to each hemisphere.

typical frequency of occurrence of spikes in these
recordings, this choice of epoch length represents a
reasonable choice.

2.3. Multivariate AR models and attenuation
coefficients

In time series analysis, the class of (linear) autore-
gressive (AR) models is well known for the purpose of
linear prediction from a set ofp previous values, using
a corresponding set ofp coefficients.

The generalization of univariate AR models to the
case of MAR models is straightforward. The set of pre-
vious scalar values is replaced by a set of vectors of
simultaneously observed previous values, and the cor-
responding coefficients are replaced by square matri-
ces. Having estimated these AR coefficient matrices,
the impulse response function can be computed. A de-
tailed description of MAR models and of the algorithm
for the computation of the impulse response function
is given inAppendix A.

MAR models were estimated independently for left
and right hemispheres (each containingN = 6 chan-
nels) based on a segmentation of the given time series
into consecutive non-overlapping epochs, and impulse
response functions were computed for each epoch. The
epoch length was chosen as 3 s (i.e. 450 time frames).
In total, for each patient, 9600 epochs within 8 h of noc-
turnal ECoG were analyzed.

In Fig. 2, some typical epochs and the corre-
sponding impulse response functions are shown. If a
given epoch does not contain any spike (Fig. 2(a)),
the impulse response function typically will con-
verge to zero (Fig. 2(c)), because all eigenvalues of
the corresponding transition matrix (seeEq. (A.6) in
Appendix A) will lie inside the unit circle (Fig. 2(e)).
On the other hand, if there are spikes in a given
epoch (Fig. 2(b)), usually the impulse response func-
tion will diverge to infinity (Fig. 2(d)), since some
eigenvalues will lie outside the unit circle (Fig. 2(f)).
This correspondence between modulus of eigenvalues
and behavior of impulse response functions follows
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Fig. 2. Superimposed ECoG time series within two epochs without spikes (a) and with spikes (b). Corresponding superimposed impulse response
functions (c and d) and corresponding eigenvalues (e and f).
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Fig. 3. Averaged absolute value of impulse response functions corresponding to one epoch without spikes (solid line), and fitted damping
function (dashed line). Note that byβ the attenuation coefficient is denoted.

immediately from linear system theory (Hamilton,
1994).

In order to calculate attenuation coefficients, the ab-
solute values of impulse response functions are av-
eraged over all channels for each epoch; details can
be found inAppendix A. Epochs without spikes will
typically be characterized by positive values of the at-
tenuation coefficient, seeFig. 3 for an example. The
smaller the moduli of the eigenvalues are, the faster
will the averaged impulse response function converge
to zero, and this will be reflected by a higher value of
the attenuation coefficient. However, for epochs con-
taining at least one pronounced spike, the attenua-
tion coefficient is usually found to assume a negative
value.

Since it is our interest to study the dynamics of
discharge-free background activity in the mesial tem-
poral lobe region, any epoch containing at least one
spike was discarded from further analysis. Due to the
choice of a very short epoch length of only 3 s, more
than 80% of the epochs do not contain any spikes, and
the loss of data is negligible. The resulting gaps in the
sequence of values of the attenuation coefficient were
linearly interpolated by using the values obtained from
the two epochs adjacent to the gap; this interpolation

any

sizeable extent and serves mainly the purpose of sim-
plifying the numerical implementation.

Before estimating MAR models, the model orderp
has to be chosen. For the purpose of comparison be-
tween models estimated for a large number of different
epochs, it would not be advisable to re-adjust the model
order for each epoch and each channel, so a common
value should be chosen. It is important to choose a suf-
ficiently large value, lest any relevant correlations in
the data may be missed. On the other hand, too large
model orders may cause over-fitting problems and re-
duce the reliability of the estimated model parameters
due to their large number. We repeated the numerical
analyses for values ofp ranging from 2 to 40 and found
that forp≥ 20 results remained essentially unchanged;
therefore, we conclude that for our data a model order
of p = 20 represents a good compromise between the
extremes.

We remark that for the given setting the number of
parameters which has to be estimated in each individ-
ual model fit will exceed the limit of 10% of the number
of data points within each epoch; usually, when fitting
models to finite data, this case is avoided. But in our
case, the models are not fitted for the purpose of pre-
diction, therefore high accuracy of the parameter esti-

erve
step does not affect the results of the analyses to
 mates is not our main concern. The MAR models s
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Fig. 4. Temporal evolution of attenuation coefficient (upper panels), spike rate (middle panels) and hypnogram (lower panels) of two typical
unilateral focal patients (patient #2 (a) and patient 5# (b)) and the bilateral focal patient (patient #4 (c)). Solid lines and dash-dotted lines are
corresponding to left and right hemispheres, respectively. The attenuation coefficient was computed for non-overlapping epochs of 3 s length
for nocturnal ECoG data covering 8 h; for the purpose of this graphical representation, the sequence of values of attenuation coefficient was
smoothed by a 200-point moving average. Spike rates were counted for non-overlapping epochs of 1 min length and smoothed by a 10-point
moving average.

only the purpose of capturing the most salient dynam-
ical properties of the underlying dynamics, which we
ultimately summarize in one single number, the atten-
uation coefficient, therefore we expect the estimates of
this coefficient to be sufficiently reliable.

3. Results

Sequences of values of the attenuation coefficient
for two typical unilateral patients and one bilateral pa-
tient are shown inFig. 4(a)–(c) (upper panels). In four
of the five unilateral focal patients, we find higher val-

ues of the attenuation coefficient in the focal hemi-
sphere during almost the entire nocturnal ECoG record-
ings (including REM, Non-REM and Waking stages,
but excluding disconnected periods). However, for the
bilateral focal patient the figure shows very similar val-
ues of the attenuation coefficient in both hemispheres.

We tested for significance of the difference of at-
tenuation coefficients in epileptic and non-epileptic
hemispheres for the set of epochs comprising all REM
epochs, all Non-REM epochs and all Waking epochs
(denoted by “Complete recording”), without perform-
ing any pre-processing, such as applying a moving av-
erage (which was done only for the purpose of graphical
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Table 2
Evaluation of statistical significance of the difference of AC between focal and non-focal hemispheres (for patient #4 left and right hemispheres)
in REM, Non-REM and making epochs, and in all epochs (“Complete recording”)

Patient # Complete recording REM Non-REM Waking

Unilateral
1 z= 1.2862 z= 0.9919 z= 0.8045 z= 0.5547

P = 0.1745 P =0.2439 P = 0.2887 P = 0.3421

2 z= 3.5762 z= 0.6463 z= 3.4619 z= 0.8659
P < 0.0007a P = 0.3237 P = 0.0010a P = 0.2742

3 z= 6.4457 z= 4.8248 z= 5.9204 z= 1.3871
P < 0.0001a P < 0.0001a P < 0.0001a P = 0.1524

5 Z = 11.3356 z= 7.8404 z= 8.9456 z= 3.3565
P < 0.0001a P < 0.0001a P < 0.0001a P = 0.0014a

6 z= 15.7784 z= 4.6296 z= 13.7891 z= 6.7005
P < 0.0001a P < 0.0001a P < 0.0001a P < 0.0001a

Bilateral
4 z= 1.3796 z= 1.0496 z= 1.1043 z= 0.1490

P = 0.1540 P = 0.2300 P = 0.2168 P = 0.3945

zscores andP-values of standardt-tests are given.
a Denotes values with a significance level of more than 95% (P < 0.05).

representation). Since for each patient, the total num-
ber of epochs was larger than 9000, the standardz-
test could be used for this purpose; as null hypothesis,
the assumption was used that there was no difference
of attenuation coefficient between epileptic and non-
epileptic hemispheres. The results are shown inTable 2.
From theP-values shown in the table, it can be seen that
with respect to “Complete recordings” the discrimina-
tion of hemispheres is significant for four of five unilat-
eral patients (#2, #3, #5 and #6). For the case of the only
patient failing to show a significant difference (#1), we
note that nevertheless thez-value itself is positive, and
thereby no contradictory result is produced. Further-
more, even for this patient the attenuation coefficient
succeeds to indicate the focal hemisphere correctly in
about 50% of all epochs.

For the sake of completeness,Table 2also contains
results obtained only from REM, Non-REM and Wak-
ing epochs.

It is possible to obtain additional useful information
from analyzing the fluctuations of the attenuation co-
efficient during time. InFig. 5, we show the standard
deviation (STD) of the sequences of attenuation coeffi-
cient values (using all REM and Non-REM epochs) in
focal and non-focal hemispheres for all unilateral pa-

mi-
ients

#2, #3, #5 and #6, standard deviations in the focal hemi-
sphere are higher than in the non-focal hemisphere. In
other words, in the focal hemisphere the attenuation
coefficient displays larger fluctuations than in the non-
focal hemisphere. In the case of bilateral patient #4, the
fluctuations of the attenuation coefficient are of approx-
imately the same size in both hemispheres, assuming a
similar value as in the focal hemispheres of the unilat-
eral patients.

We shall now discuss some further details of these
results. Patient #2 has a focus in the left mesial temporal
lobe. As can be seen inFig. 4(a), middle panel, for this
patient the spike rate in the left hemisphere is larger
than in right hemisphere. This result agrees well with
the results based on the evaluation of the attenuation
coefficient.

The recording for patient #5 displays a very regular
sleep cycle. As shown inFig. 4(b), middle panel, there
exists a pronounced correlation between the hypno-
gram and the time course of the spike rate. As men-
tioned inSection 1, it is well known that Non-REM
sleep typically will induce epileptic discharges in the
focal hemisphere; in the figure, it can be seen that dur-
ing REM sleep the spike rate becomes nearly zero. But
in contrast to the attenuation coefficient results for this

ro-
cal
tients; for the bilateral patient #4, left and right he
spheres are compared. Again for the unilateral pat
patient, after the first 200 min the spike rate fails to p
vide clear discrimination between focal and non-fo
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Fig. 5. Standard deviation of sequences of attenuation coefficient (AC) corresponding to focal and non-focal hemispheres (left and right bars,
respectively), for patient #4 corresponding to left and right hemispheres.

hemispheres; moreover, in contradiction to the medi-
cal diagnosis, during the first 200 min of this record-
ing, the spike rate in the non-focal hemisphere turns
out to be higher than in the focal hemisphere (note
that inFig. 4(b), middle panel, within the first 200 min
the solid line attains larger values than the dash-dotted
line). Therefore, we surmise that the attenuation co-
efficient may provide an improved criterion for de-
tecting the focal hemisphere correctly; fromTable 2,
it can be seen that for this patient significant results
are obtained even if only REM, Non-REM or Waking
epochs are considered. Furthermore, we also find in
the focal hemisphere a noticeable correlation between
the attenuation coefficient and the hypnogram: during
REM sleep, the values of the attenuation coefficient
are higher than during Non-REM sleep. Therefore, the
difference between the attenuation coefficients of focal
and non-focal hemispheres is larger during REM sleep
compared to Non-REM sleep.

From Table 2, it can be seen that for patient #4
the difference of attenuation coefficients between left
and right hemispheres does not show statistical signif-
icance; as shown inFig. 4(c), upper panel, in contrast
to the unilateral patients, for patient #4, values of at-
tenuation coefficient are fluctuating synchronously in
b left
h mi-
s o

mentioned inTable 1for the case of scalp EEG from
the same patient. In summary, we find that for these
patients the attenuation coefficient provides a more co-
herent and conclusive characterization of brain state
than the spike rate.

4. Discussion

The main topic of the present study is the investiga-
tion of the linear dynamical properties of basic back-
ground ECoG activity in patients suffering from mesial
temporal lobe epilepsy. Based on the results of this in-
vestigation, we have proposed a new method for detect-
ing the focal hemisphere. More specifically, we found
that in four out of five unilateral patients the dynamics
of spike-free background activity displays significantly
higher attenuation coefficient in the focal hemisphere
than in the non-focal hemisphere. Furthermore, in a
patient showing a regular sleep cycle these differences
were higher during REM sleep than during Non-REM
sleep.

The results presented in this study indicate that ba-
sic background activity without any obvious epilep-
tic wave patterns may contain relevant information

po-
em-
er of
oth hemispheres. However, the spike rate in the
emisphere is frequently higher than in the right he
phere, seeFig. 4(c), middle panel; this fact is als
for the detection of the focal hemisphere in tem
ral lobe epilepsy. Since in this study we have
ployed a database composed of a limited numb
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patients, further studies employing larger databases
will be needed in order to investigate whether this ap-
proach may be useful in clinical practice. It would also
be desirable to apply this approach to ECoG recordings
obtained from larger numbers of implanted electrodes.

Since our study focuses on the analysis of noctur-
nal recordings, it also bears relevance for certain as-
pects concerning the relationship between sleep stage
and epileptic phenomena. The spike rate is affected
by various physiological conditions. It is known that
Non-REM sleep induces epileptic discharges. How-
ever, for certain patients having an irregular sleep cy-
cle, sometimes this phenomenon is not observed. Based
on the results of our preliminary study, we conjecture
that analysis of the background activity by the attenu-
ation coefficient may facilitate the distinction between
the hemispheres in such cases, presumably because the
dynamics underlying the background ECoG activity re-
flects the temporary brain state of the patient.

Since the level of cortical activity during wakeful-
ness is comparable to that during REM sleep, also at-
tenuation coefficient analysis of awake-state data may
provide useful information. Especially for patients #5
and #6, significantz-values were found during Wak-
ing epochs, and we note that for all unilateral patients
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signals and other sources. For these reasons, when ap-
plied to EEG data the performance of the attenuation
coefficient may be less favorable than in the case of
ECoG data. Nevertheless, in future work our approach
should be extended to scalp EEG data.

Finally, we would like to add some comments on
the results presented in this study from the viewpoint of
system theory. Those aspects of brain dynamics which
can be captured by the sets of intracranial electrodes
employed in this study, have been represented for each
hemisphere by a MAR model, and the properties of
these models have been summarized by their averaged
impulse response functions; if an external force, such
as an impulse, was applied to these MAR models, the
ensuing oscillation would decay faster for the focal
hemisphere than for the non-focal hemisphere. In other
words, a high value of the attenuation coefficient is cor-
related to higher robustness and stability against distur-
bances.

Currently, the limited size of the database used in
our study, both with respect to number of patients and
number of electrodes, still renders these results prelim-
inary; but if we may provisionally presume their valid-
ity, a tentative physiological interpretation of these dif-
ferences of dynamical properties could be provided by
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z-values during Waking epoch are higher than for
bilateral patient. In the present study, we only have
alyzed sleep ECoG data with some interspersed
instances of waking, therefore a detailed investiga
of awake-state data should be the subject of futur
search.

It would also be interesting to investigate whe
similar information could be obtained also from sc
EEG. In this study, we have used cortical sig
recorded from electrodes attached directly to
parahippocampal gyrus. This area is very close to
hippocampus, which is considered as an area like
contain the focus or foci of mesial temporal epilep
On the other hand, for the case of scalp EEG the
trode closest to the epileptic focus is given by the a
rior temporal derivation, but this position is still mu
farther away from the focus than the locations of
intracranial electrodes, as used in this study. Ano
problem is that the amplitude of the scalp EEG is at
five times smaller than the amplitude of the ECoG,
furthermore the EEG is contaminated by diffuse e
tric fields and various artifacts originating from e
movements, blinking, muscle activity, electrocar
assuming a decrease of dynamical flexibility in the
cal hemisphere, possibly caused by histological de
eration and deficiencies of neuronal networks (Sloviter,
1994; Bahh et al., 1999), furthermore by hilar cell los
and mossy fiber reorganization (Masukawa, 1999). As a
result of this increased dynamical stiffness of such
ronal networks, their dynamics would be less affec
by impulses and therefore could recover more qui
than in the case of unimpaired networks.Wang and
Wieser (1994)found reduced fluctuation of the bac
ground EEG (recorded by foramen ovale electro
in the focal hemisphere, as compared to the non-f
hemisphere. Essentially, the conclusions of their s
are in agreement with our results.

However, we have also demonstrated by our s
of nocturnal ECoG that within the focal hemisphere
spite of its rigidity, pronounced changes dependin
sleep stage do occur.

As an alternative to our approach, it would be po
ble to carry out in vivo experiments in animal or hum
tissue, in order to directly observe the impulse resp
elicited by adding electrical stimuli during basic ba
ground activity of the neural tissue. However, it is to
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expected that such electrical stimuli would interact with
the background activity and possibly change the dy-
namical properties of the neural tissue. For this reason,
the approach of conducting additional experiments for
the purpose of obtaining improved observations leads
to a difficult situation, known as the “observation prob-
lem” in physics. Thus, mathematical modeling of ac-
tual data and analyzing the corresponding dynamical
properties through numerical simulation is to be pre-
ferred, since it will avoid this problem. Accordingly,
we find that the approach of analyzing time series by
MAR models provides useful information about the dy-
namics of the system, which cannot be obtained from
experiments.

Acknowledgements

The authors would like to express their sincere
thankfulness to Dr. Rolando J. Biscay Lirio (Insti-
tute of Cybernetics, Mathematics and Physics, Havana,
Cuba) for helpful discussions and comments on the
manuscript, and to the anonymous referees for valuable
comments and suggestions that have led to a consider-
able improvement of this paper. Support from the Japan
S ugh
f rom
t t GA
6

A

ved
s u-
t

x

w
c he
A ast-
s f
m

the
c that

X a-

neously measured values at timet (whereN denotes
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Here, the AR coefficientsAi are no longer scalar quan-
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become matrices.Et is a prediction error vector for all

channels:Et = (e1
t , e

2
t , . . . , e
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The AR coefficients can be estimated by a similar
method as in the case of univariate AR models.
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ppendix A

Suppose thatxt denotes a time series of obser
calar values, wheret denotes time. A univariate a
oregressive (AR) model forxt is defined by

t =
p∑

i=1

aixt−i + et, (A.1)

here p denotes model order,ai denotes the AR
oefficients andet represents prediction error. T
R coefficients are estimated by a standard le
quares method, such that the sum of squares oet is
inimized.
The generalization of univariate AR models to

ase of MAR models is straightforward. Suppose

t = (x1
t , x

2
t , . . . , x

N
t )

T
denotes the vector of simult
Zt = (Xt , Xt−1, . . . ,Xt−p+1) ,

Zt−1 = (XT
t−1, X

T
t−2, . . . ,X

T
t−p)

T
,

V t =


Et

N×p︷ ︸︸ ︷
(0, . . . , 0)




T

, (A.4)

andΦ denotes the state transition matrix which is d
fined as

Φ =




A1 A2 . . . Ap

I 0 . . . 0
... . . .

...
...

0 . . . I 0


 . (A.5)

Here,X andA are the same as inEq. (A.2).
Eq. (A.5)implies that

Zt+s = ΦsZt−1 +
s−1∑
i=0

ΦiV t+s−i. (A.6)
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The firstN rows of the vector equation represented by
Eq. (A.6)constitute a vector generalization ofEq. (A.2)

Xt+s =
p∑

i=1

Φ
(s)
1i Xt−i+1 +

s−1∑
j=0

Ψ jEt+s−j. (A.7)

Here,Ψ j = Φ
(j)
11, andΦ

(j)
11 denotes the upper left block

of Φj, whereΦj is the matrixΦ raised to thejth power;
that is to say that the matrixΦ(j)

11 is composed of rows 1
throughNand columns 1 throughN from the matrixΦj.
More generally,Φ(j)

1i is composed of rows 1 throughN
and columns (i − 1)N + 1 throughiN from the matrix
Φj.

The impulse response function of the vector
Eq. (A.4)is defined as

Zs = ΦsZ0, where

Z0 =




N︷ ︸︸ ︷
(1, . . . , 1)

N×(p−1)︷ ︸︸ ︷
(0, . . . , 0)




T

. (A.8)

If the eigenvalues ofΦ all lie inside the unit circle,
thenΦs → 0 asS→ ∞, thereforeZs → 0 (Hamilton,
1994).
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