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1. Introduction

Data sets obtained by functional magnetic resonance imaging (fMRI)
represent both spatial and temporal aspects of the hemodynamics of
the human brain. Whereas usually in the analysis of fMRI data sets
the focus lies on spatial aspects, the temporal dimension has been re-
ceiving less attention. In this contribution we show that by fitting
spatiotemporal dynamical models to fMRI data sets information about
the long-distance connectivity structure of the investigated brain can
be obtained.

2. Methodology

Connectivity between two components z(t) and a;(t), t = 1,..

(each with mean zero) of multivariate time series @(t) = (.'1:1(f,1. R [;t))
may be quantified by measures of linear correlation such as
3 ai(t)z;(t)
Claa,) =

p(a(k).2,()
z,(k))p (1))
t) and ), and p(.)
denotes (marginal or joint) probability distributions. It is well known
that estimating these distributions from time series data may be diffi-
cult, because:
e lack of data (fMRI time series are short!), making results from
histogram estimators or kernel estimators unreliable;
e possibly complicated shape of the distributions
(as a consequence of nonlinearities);
e temporal correlations among the z;(t) (3]
Instead of silently ignoring these temporal correlations, we propose to

=

explicitly model them by spatiotemporal dynamical models which can
be used to whiten the data, i.e. to estimate innovations (residuals)
after predicting the deterministic part of the dynamics:
e(t) = z(t) - Fz(t—1),x(t - 2),...)
The linear approximation of F(.) is given by a multivariate linear au-
toregressive model of order ¢:
e(t) = () — 3> A)a(t —t')
=1

where the A(') represent a set of ¢ parameter matrices of size V x V.
3y assuming that only neighbouring voxels will interact directly, most
elements of the A(') become zero, and the remaining elements can be
estimated by a maximum-likelihood approach. Each component of €(t)
will be temporally uncorrelated (white) and, according to the theory of
Markov processes [2], will follow a Gaussian distribution. Furthermore,
spatial whitening can be applied by multiplying the vector of all com-
ponents x(t) with a Laplacian matrix, prior to model fitting; thereby
components of €(t) become mutually uncorrelated

Asaresult, the data @(t) = (2:(t), ..., z(t)) is replaced by the co
ponding innovations, €(t) = (m(t‘] ..... 5‘—(1‘,)) These innovations are
more convenient for searching for long-distance connections than the
raw data itself. For this purpose, pairs of voxels (7, j) are modelled, and
the difference of (logarithmic) likelihood between uncoupled and cou-
pled bivariate models (corresponding to absence and presence of direct
connection) is calculated as an estimate of mutual information /(. )
[1], which is superior to previously employed estimators of I(z

3. Simulation study

A stochastic dynamical system is generated by a (closed) chain of
v

moid nonlinearity and neighbourhood coupling. The system represents
a coupled-map lattice, with some properties of neural networks. The
nodes are driven by Gaussian white noise processes, which are mutually
independent for all pairs of nodes, except for nodes 14 and 41, which
are driven by the same noise process.
A multivariate time series of length N = 256 points is sampled:

= 64 nodes (voxels) with local linear second-order dynamics, sig-
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The linear correlation map of this data set shows a variety of structures:

original data: lincar corrclation

The same structures can be seen in a histogram estimate of the mutual
information map of this data set [3]:
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Now the linear correlation map is recomputed after spatiotemporal
whitening; it can be seen that the strong correlation between nodes
14 and 41 is much more pronounced now:

innovations: linear correlation
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Histogram estimate of mutual information map after spatiotemporal
whitening (3]

innovations: mutual information ; max = 0.20323
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And finally the mutual information map is computed again, but now
based on the differences of log-likelihood between uncoupled and cou-
pled bivariate models (more precisely the difference of AIC is shown,
where AIC represents the Akaike Information Criterion, a corrected
estimator for (—2)x log-likelihood, introduced in order to avoid over-

fitting). It can be seen that, in contrast to the map obtained by a
histogram estimator, this map clearly identifies the strong correlation
between nodes 14 and 41, despite only a very short time series of 256
points being available

innovations: AIC differences
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4. Example for analysis of real fMRI data

We apply the new approach to a fMRI data set from a visual-stimulation
experiment (data courtesy of N.Sadato, National Institute of Physiolog-
ical Sciences, Okazaki, Japan). Final results of the connectivity analysis
for this data set are not yet available, but we can demonstrate the fea-
sibility of the proposed methodology.

After applying the spatiotemporal whitening as described above, two
voxels are arbitrarily chosen:

For this pair of voxels the uncoupled model
yields an AIC of 1101.7768, and the cou-
pled model yields AIC=1066.9254, indicating
a clear improvement of the model by including
an instantaneous correlation between these two
voxels. In principle, the same analysis can be
carried out for all pairs of voxels, and for many

of them an improvement can be found. In this
ay for each chosen reference point a map of correlated or anti-
correlated voxels can be found, as shown in the next example
(red/yellow denotes correlation, blue anticorrelation):
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5. Summary

‘We have presented a dynamical approach to extracting connectivity
information from multivariate time series data, such as fMRI. Connec-
tivity is defined in terms of correlation or mutual information between
time series of innovations remaining after spatiotemporal whitening.
Differences of log-likelihood for pairs of voxels directly serve as an im-
proved estimator of mutual information

We hope that this approach will contribute to resolving the current
confusion on the proper definition of the concept of “functional connec-
tivity”, on efficient ways to explore it and on its relation to “anatomical
connectivity”

The approach can easily be extended to time-delayed correlations, and
thereby to quantitative measures of causality.
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