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We present a new approach for estimating solutions of the dynamical

inverse problem of EEG generation. In contrast to previous

approaches, we reinterpret this problem as a filtering problem in a

state space framework; for the purpose of its solution, we propose a

new extension of Kalman filtering to the case of spatiotemporal

dynamics. The temporal evolution of the distributed generators of the

EEG can be reconstructed at each voxel of a discretisation of the gray

matter of brain. By fitting linear autoregressive models with

neighbourhood interactions to EEG time series, new classes of inverse

solutions with improved resolution and localisation ability can be

explored. For the purposes of model comparison and parameter

estimation from given data, we employ a likelihood maximisation

approach. Both for instantaneous and dynamical inverse solutions, we

derive estimators of the time-dependent estimation error at each voxel.

The performance of the algorithm is demonstrated by application to

simulated and clinical EEG recordings. It is shown that by choosing

appropriate dynamical models, it becomes possible to obtain inverse

solutions of considerably improved quality, as compared to the usual

instantaneous inverse solutions.
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Introduction

Recordings of electromagnetic fields emanating from human

brain are well known to provide an important source of information

about brain dynamics. Electrical potentials on the scalp surface are

very easy to measure at a set of electrodes attached to the skin; as a

result, multivariate electroencephalographic (EEG) time series are

obtained. With considerably higher technical effort, magnetoence-

phalographic (MEG) time series can also be recorded.
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It is by now widely accepted that the sources of these electro-

magnetic fields are electrical currents within networks of neurons

in the cortex and other gray matter structures of brain; while part of

this current remains confined within the dendritic trunks (primary

currents), another part flows through the extracellular volume

(secondary currents) (Nunez, 1981). To obtain more direct access

to the dynamics governing the activity of these networks of

neurons, it would be desirable to have direct estimates of these

sources. The estimation of these sources from recordings of EEG

or MEG has recently become a subject of intense research (Darvas

et al., 2001; Gorodnitsky et al., 1995; Grave de Peralta Menendez

and Gonzalez Andino, 1999; Greenblatt, 1993; Pascual-Marqui et

al., 1994; Phillips et al., 2002; Riera et al., 1998; Scherg and

Ebersole, 1994; Schmitt et al., 2002; Yamashita et al., 2004; for a

recent review see Baillet et al., 2001). In this paper, we focus on

the case of the EEG, but the ideas and methods to be presented

remain equally valid for the MEG.

Two main classes of source models have been developed:

‘‘equivalent current dipole’’ approaches (also known as ‘‘paramet-

ric’’ methods), in which the sources are modeled by a relatively

small number of focal sources at locations to be estimated from the

data, and ‘‘linear distributed’’ approaches (also known as ‘‘imag-

ing’’ or ‘‘current density reconstruction’’ methods), in which the

sources are modeled by a dense set of dipoles distributed at fixed

locations (which, in analogy to the case of magnetic resonance

imaging, we shall call ‘‘voxels’’) throughout the head volume.

Examples of parametric approaches include least-squares source

estimation (Scherg and Ebersole, 1994) and spatial filters, such as

beamforming and multiple signal classification (‘‘MUSIC’’)

approaches (Mosher et al., 1992). This paper exclusively deals

with the linearly distributed model approach.

It is a characteristic problem of distributed source models that a

large number of unknown quantities has to be estimated from a

much smaller number of measurements; because of this, we are

facing a problem that does not possess a unique solution, known as

‘‘inverse problem’’. The number of measurements given at one

instant of time may be as low as 18, if the standard 10–20 system

of clinical EEG recordings is employed; by increasing the number

of electrodes, we may eventually obtain up to a few hundred
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measurements, but they will fail to provide an equivalent amount

of independent information due to strong correlations between

adjacent electrodes. On the other hand, the number of voxels will

typically be several thousand, and furthermore at each voxel site a

full three-dimensional current vector has to be modelled.

To identify a unique solution (i.e., an ‘‘inverse solution’’),

additional information has to be employed. So far this has been

donemainly by imposing constraints on the inverse solution. Certain

constraints can be obtained from neurophysiology (Phillips et al.,

2002); as an example, it is reasonable to assume that only voxels

within gray matter contribute substantially to the generation of the

electromagnetic fields; other constraints refer to the probable direc-

tion of local current vectors at specific locations. But such constraints

do not suffice to remove the ambiguity of the inverse solution.

For this purpose, much more restrictive constraints are needed,

such as the minimum-norm constraint suggested by Hämäläinen

and Ilmoniemi (1984) or the maximum-smoothness constraint

suggested by Pascual-Marqui et al. (1994). These constraints can

be applied independently for each instant of time, without access-

ing the data measured at other instants of time; therefore, we will

say that the resulting inverse solutions represent solutions of the

‘‘instantaneous’’ inverse problem.

The idea of including data from more than a single instant of

time into the estimation of inverse solutions is attractive, since

more information becomes available for the solution of an ill-posed

problem; consequently, there has recently been growing interest in

generalising the instantaneous inverse problem to ‘‘dynamical’’

inverse problems and to develop algorithms for its solution (Darvas

et al., 2001; Kaipio et al., 1999; Schmitt et al., 2002; Somersalo et

al., 2003).

In this paper, we will contribute to these efforts by developing a

new interpretation of the dynamic inverse problem in its most

general shape, and by proposing a new approach to its solution. In

contrast to most previous work, we will not approach this problem

within a constrained least squares (or, equivalently, Bayesian)

framework, but by reformulating it as a spatiotemporal state space

filtering problem. So far, the dynamical aspect of the available

algorithms was essentially limited to imposing temporal smooth-

ness constraints (Baillet and Garnero, 1997; Schmitt et al., 2002);

from a time-domain modelling perspective, such constraints cor-

respond to the very special case of a spatially noncoupled random-

walk model (Somersalo et al., 2003). By appropriate generalisa-

tion, our approach will permit the use of much more general

predictive models in this context, such that a consistent description

of the spatiotemporal dynamics of brain becomes possible.

It should be stressed that general predictive models can also be

incorporated into the framework of constrained least squares, and

in a companion paper to this paper we will discuss in more detail

the application of this idea to the inverse problem of EEG

generation (Yamashita et al., 2004).

As the main tool for our task, we will adapt the well-known

Kalman filter (Chui and Chen, 1999) to spatiotemporal filtering

problems; it will become evident that Kalman filtering provides a

natural framework for addressing the dynamical inverse problem of

EEG generation. Theoretically, by employing a very high-dimen-

sional state vector, standard Kalman filtering could deal with any

spatiotemporal filtering problem, but the specific nature of the

spatial dimensions (such as neighbourhood relationships between

voxels) would not be properly captured, and computational

expenses would soon become prohibitively large. By assuming a

properly chosen structure of the dynamics and certain additional
approximations, the intractable high-dimensional filtering problem

can be decomposed into a coupled set of tractable low-dimensional

filtering problems. This adaptation can be regarded as a general-

isation of standard Kalman filtering to the case of partial (space–

time) differential equations.

From system theory, it is known that the sufficient condition for

successful application of Kalman filtering is observability of the

given state space system, as represented by its state transition

parameter matrix (or, in the nonlinear case, the corresponding

Jacobian matrix) and its observation matrix (Kailath, 1980; Kal-

man et al., 1969). Although we will not be able to rigorously prove

observability, we will discuss the application of this concept to our

model and demonstrate through an explicit numerical simulation

study that Kalman filtering can successfully be applied. From this

simulation, it will also become evident that a crucial element for

the estimation of dynamical inverse solutions is given by the model

according to which the dynamics of the voxel currents is assumed

to evolve. If a very simple model is chosen, we will obtain

solutions that offer only small improvements over solutions result-

ing from previous nondynamical (i.e., instantaneous) algorithms

for solving the inverse problem; if the model contains additional

information about the true dynamics, much better solutions can be

obtained. Such information can at least partly be obtained by

choosing a model with a sufficient flexibility for adaptation to

given data; this adaptation can be performed by suitable fitting of

dynamical parameters and noise covariances.

We will propose to employ the maximum likelihood method for

this fitting task; it will become evident that Kalman filtering is the

natural tool for calculating the likelihood from EEG data. By

assuming a somewhat more general viewpoint, we will address

parameter estimation as a special case of model comparison, and

employ appropriate statistical criteria, namely the Akaike Informa-

tion Criterion (AIC) and its Bayesian variant, ABIC, for the

purpose of comparing inverse solutions. Numerical examples will

be shown both for simulated data and for a clinical EEG recording.

Finally, it should be mentioned that there exists already a

sizable amount of published work dealing with applications of

Kalman filtering to the analysis of EEG recordings, which we are

unable to review in any appropriate form in this paper; and

furthermore there exist also applications of Kalman filtering, or

related filtering approaches, to inverse problems, some of which

also fall into the field of biomedical data analysis, like Electrical

Impedance Tomography or evoked potential estimation (see, e.g.,

Baroudi et al., 1998; Kaipio et al., 1999; Karjalainen, 1997).

Recently, Somersalo et al. (2003) have applied a nonlinear alter-

native to Kalman filtering, known as particle filtering, to the

problem of estimating focal sources from MEG data. While

providing important results and methodology, so far none of these

studies has addressed the problem of reconstruction of distributed

sources from EEG (or MEG) times series in the context of

identification of optimal dynamical (i.e., predictive) models.

In this paper, we will introduce a new practicable solution for

the problem of applying Kalman filtering to very high dimensional

filtering problems, as they arise in the case of spatiotemporal brain

dynamics. Moreover, we will replace the largely arbitrary choice of

dynamical models that can be seen in many applications of Kalman

filtering, by a systematic model comparison and selection approach

that provides explicit justification for the chosen model and

parameters in terms of the numerical value of a statistical criterion.

By this approach, a wide class of very general models becomes

available for data-driven modelling of brain dynamics.
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The inverse problem of EEG generation

We start from a rectangular grid of Nv voxels covering the

cortical gray matter parts of human brain; in this study, inverse

solutions will be confined to these voxels. In the particular discre-

tisation that we will employ, there are Nv = 3433 cortical gray-matter

voxels. At each voxel, a local three-dimensional current vector

jðv; tÞ ¼ ðjxðv; tÞ; jyðv; tÞ; jzðv; tÞÞy

is assumed, where v is a voxel label, t denotes time, and y denotes
matrix transposition. The column vector of all current vectors (i.e.,

for all gray-matter voxels) will be denoted by

JðtÞ ¼ ðjð1; tÞy; jð2; tÞy; . . . ; jðNv; tÞyÞy

which represents the dynamical state variable of the entire system.

These currents are mapped to the electroencephalographic

signal (EEG), which is recorded at the scalp surface. The EEG at

an individual electrode shall be denoted by y(i,t), where i is an

electrode label; the nc-dimensional column vector composed of all

the electric potentials at all available electrodes shall be denoted by

YðtÞ ¼ ðyð1; tÞ; yð2; tÞ; . . . ; yðnc; tÞÞy

In this study, we assume that the 10–20 system is employed; all

potentials refer to average reference, although other choices are

possible. Due to the choice of a reference out of the set of

electrodes, it is advisable to exclude one of the standard electrodes

of the 10–20 system from further analysis, such that the effective

dimension of Y becomes nc = 18.

For distributed source models, it is possible to approximate the

mapping from J to Y by a linear function (Baillet et al., 2001)

whence it can be expressed as

YðtÞ ¼ KJðtÞ þ :ðtÞ ð1Þ

Here K denotes a nc � 3Nv transfer matrix, commonly called ‘‘lead

field matrix’’. This matrix can approximately be calculated for a

three-shell head model and given electrode locations by the

‘‘boundary element method’’ (Ary et al., 1981; Buchner et al.,

1997; Pascual-Marqui et al., 1994; Riera et al., 1998). It is an

essential precondition for any approach to find inverse solutions

that a reliable estimate of this matrix is available. Here we remark

that typically the lead field matrix turns out to be of full rank.

It will be convenient for later use to define the individual

contribution of each voxel to the vector of observations by

K(v)j(v,t), where K(v) is the nc � 3 matrix that results from

extracting those three columns out of K, which are multiplied with

j(v,t) in the process of the multiplication of K and J(t). From this

definition, Eq. (1) can also be written as

YðtÞ ¼
XNv

v¼1

KðvÞjðv; tÞ þ :ðtÞ ð2Þ

By : (t), we denote a vector of observational noise, which we

assume to be white and Gaussian with zero mean and covariance

matrix Ce = E(:: y). We will make the assumption that Ce has the

simplest possible structure, namely

Ce ¼ r2
e Inc ð3Þ
where Inc denotes the nc � nc identity matrix; that is, we assume

that the observation noise is uncorrelated between all pairs of

electrodes and of equal variance for all electrodes. These assump-

tions may be relaxed in future work.

Eq. (1) is part of the standard formulation of the inverse

problem of EEG (Pascual-Marqui, 1999); in this paper, we propose

to interpret it as an observation equation in the framework of

dynamical state-space modelling.

The inverse problem of EEG generation is given by the problem

of estimating the generators J(t) from the observed EEG Y(t); this

obviously constitutes an ill-posed problem since the dimension of

J(t) is much larger than the dimension of Y(t). As also in the case

of many other inverse problems, it is nevertheless possible to

obtain approximate estimates of J(t). As a representative of the

numerous approaches that have been proposed for this purpose, we

select here the ‘‘low-resolution brain electromagnetic tomography’’

(LORETA) algorithm, proposed by Pascual-Marqui et al. (1994),

as a starting point; a brief introduction will be given in the next

section.
The instantaneous case

The LORETA approach

In this approach, a spatial smoothness constraint is imposed on

the estimate of J(t), which can be expressed by employing a

discrete spatial Laplacian operator defined by

L ¼ INv
� 1

6
N

� �
� I3 ð4Þ

Here N denotes a Nv � Nv matrix having Nvv V = 1 if v V belongs to
the set of neighbours of voxel v [this set shall be denoted byNðvÞ],
and 0 otherwise. By the symbol �, Kronecker multiplication of

matrices is denoted. The (3i)th row vector of L acts as a discrete

differentiating operator by forming differences between the nearest

neighbours of the ith voxel and ith voxel itself (with respect to the

first vector component).

In the LORETA approach, the inverse solution is obtained by

minimizing the objective function

EðJÞ ¼ NðY � KJÞN2 þ k2NLJN2 ð5Þ

i.e., a weighted sum of the observation fitting error and of a term

measuring nonsmoothness by the norm of the spatial Laplacian of

the state vector. ||.|| denotes Euclidean norm. The hyperparameter k
expresses the balance between fitting of observations and the

smoothness constraint; a nonzero value for k provides regularisa-

tion for the solution (Hofmann, 1986).

Here we would like to mention that the second term in Eq. (5)

represents a special example of a general constraint term; by

appropriate choice of this term, it is also possible to impose other

kinds of constraints instead of spatial smoothness, such as ana-

tomical constraints or sparseness of the inverse solution (see Baillet

et al., 2001, and references cited therein).

The least squares solution of the problem of minimising Eq. (5)

is given by

Ĵ ¼ ðKyK þ k2LyLÞ�1KyY ð6Þ

here by Ĵ the estimator of the state vector J is denoted. Within the

framework of Bayesian inference, this solution can be interpreted
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as the Maximum A Posteriori (MAP) solution for the case of

Gaussian distributions for the likelihood and the prior (Tarantola,

1987; Yamashita et al., 2004):

pðY j J; r2
eÞfNðKJ; r2

eÞ

pðJ; s2ÞfNð0; s2ðLyLÞ�1Þ ð7Þ

where we have defined s = re/k.
Note that Ĵ will not depend on the reference according to which

the EEG data Y was measured; this dependence is absorbed into the

lead-field matrix. This effect represents another advantage of

transforming EEG data into an estimated source current density:

the notorious reference problem of EEG is completely removed by

this transformation.

The matrix KyK þ k2LyL in Eq. (6) has the size 3Nv � 3Nv c
104 � 104, whence actual numerical inversion is usually imprac-

ticable. The solution can be evaluated nevertheless by using the

singular value decomposition of the nc � 3Nv matrix KL�1,

KL�1 ¼ USVy ð8Þ

where U is an orthogonal nc � nc matrix, S is a nc � 3Nv

matrix whose only nonzero elements are the singular values

Siiusi; i ¼ 1; . . . ; nc , and V is an orthogonal 3Nv � 3Nv matrix;

only the first nc columns of V are relevant for this decomposition,

and the corresponding 3Nv � nc matrix shall be denoted by Vð1Þ.
The matrix composed of the remaining 3Nv � nc columns shall be

denoted by Vð2Þ. After some transformations, Eq. (6) becomes

Ĵ ¼ L�1Vð1Þdiag
si

s2i þ k2

 !
UyY ð9Þ

Here diag (xi) denotes a diagonal matrix with elements x1,. . .,xnc on

its diagonal. Numerical evaluation of this expression can be

implemented very efficiently.

Estimation of the regularisation parameter k

Since the inverse solution given by Eq. (9) will depend

sensitively on the value of the hyperparameter k, it should be

chosen in an objective way. Various statistical criteria, such as

Generalised Cross-Validation (GCV) (Wahba, 1990), and ad hoc

methods, such as the L-curve approach (Lawson and Hanson,

1974), have been employed for this purpose. Instead of these

approaches, in this paper, we have chosen to use the Akaike

Bayesian Information Criterion (ABIC) (Akaike, 1980a,b), since

we intend to directly compare inverse solutions obtained by

different techniques by comparing their likelihood.

Given a time series of EEG observations Y(1),. . .,Y(Nt), ABIC

is defined as (�2) times the type II log-likelihood; that is, the log-

likelihood of the hyperparameters in the context of empirical

Bayesian inference. In the case of the model containing unobserv-

able variables, the type II likelihood can be obtained by averaging

the joint distribution of all variables, both observable and unob-

servable, over the unobservable variables, i.e., by forming the

marginal distribution:

ABICðre; sÞ ¼ �2logLIIðre; sÞ

¼ �2
XNt

t¼1

log

Z
pðYðtÞjJðtÞ; r2

eÞpðJðtÞ; s2ÞdJðtÞ

ð10Þ
where Y(t) are the observable and J(t) the unobservable variables;

re, s are hyperparameters, and again s = re/k.
Estimators for re and k can be obtained by maximising the

likelihood given by Eq. (10); how this can be done in an efficient

way will be presented elsewhere in more detail (Yamashita et al.,

2004). Here we give only the result.

The type II log-likelihood LII(re, s) itself can be shown to be

LIIðre; kÞ ¼
XNt

t¼1

Xnc
i¼1

log
s2i þ k2

k2
þ ncð1þ log2pr2

eÞ
 !

ð11Þ

where the estimate of the observation noise variance re
2 is given by

r2
e ¼

1

nc

Xnc
i¼1

k2

s2i þ k2
ȳ2iðtÞ ð12Þ

here ȳi(t) denotes the ith element of the vector UyYðtÞ, where U is

defined in Eq. (8).

As a result, we obtain not only estimates for the hyperpara-

meters, but also the possibility to calculate the ABIC value for any

given inverse solution (as obtained by LORETA), i.e., an estimate

for the type II likelihood. This will enable us to compare inverse

solutions obtained by different techniques, since for given data the

likelihood serves as a general measure of the quality of hypotheses

(Akaike, 1985).

It should be mentioned here that despite using an improved

statistical criterion, the proper choice of the regularisation parameter

remains a difficult problem of the LORETA method; in practice,

frequently even the order of magnitude of the appropriate value of k
is debatable and may change drastically upon seemingly insignifi-

cant changes of the data. Also for this reason, there is a growing need

for an alternative approach to estimating inverse solutions.

Estimation of the covariance matrix of the estimated state vector

So far, the lack of an efficient method for assessing the approx-

imate error associated with the inverse solutions obtained by

LORETA has been a serious weakness of this technique; certainly,

it has contributed much to the widespread scepticism that the very

idea of estimating solutions for the inverse problem of EEG

generation is still facing. Strictly speaking, estimates of unobserv-

able quantities without estimates of the corresponding error have to

be regarded as meaningless. For this reason, we introduce a method

for estimating the covariance matrix C
ðiISÞ
Ĵ

of the estimated currents

ĴðtÞ of an inverse solution obtained by LORETA (here the super-

script (iIS) denotes ‘‘instantaneous inverse solution’’).

The derivation of the expression for C
ðiISÞ
Ĵ

is inspired by recent

work by Pascual-Marqui (2002); the result is given by

C
ðiISÞ
Ĵ

¼ s2L�1Vð1Þdiag
s2i

s2i þ k2

 !
Vð1ÞyðLyÞ�1 ð13Þ

The detailed derivation is demonstrated in Appendix A.

Through this expression, it becomes possible to display error

estimates for each voxel (and each vector component) individually.

Since a corresponding error estimate can also be computed for the

new dynamical technique for estimating inverse solutions, which

we will introduce in this paper, another quantitative measure for the

comparison of different techniques for estimating inverse solutions

becomes available.
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The dynamical case

Dynamical models of voxel currents

After discussing various aspects of the LORETA method, we

shall now proceed to the formulation of the new approach for

solving the dynamical inverse problem of EEG generation; it has

already been mentioned that for this purpose an additional

temporal smoothness constraint could be introduced into Eq. (5)

(Baillet and Garnero, 1997; Schmitt et al., 2002). While this

approach will be pursued and extended elsewhere (Yamashita et

al., 2004), here the central concept of our approach will be a new

adaptation of Kalman filtering to the case of spatiotemporal

dynamics.

The Kalman filter provides the optimum tool for predicting,

filtering and smoothing estimates of the state of dynamical

systems that cannot be observed directly, but only through an

observation equation containing observational noise (Chui and

Chen, 1999). As a presupposition for its application, both the

equations governing the dynamics and the observation equation

have to be known.

Since for the case of the dynamics of human brain, no well-

substantiated models for the spatiotemporal dynamics are known

yet, we are faced with the problem of estimating suitable models

from data. Clearly, this constitutes a research task of enormous

complexity that reaches far beyond the scope of this paper;

therefore we will only be able to explore the very first and simplest

approximations to such models.

Having defined a spatial discretisation by using a finite set of

voxels, it is advisable to formulate dynamical models also with

temporal discretisation; for simplicity, we shall regard the basic

time unit of this discretisation as equal to the sampling rate of the

EEG recording. The corresponding time points will be labeled by

t = 1,2,3,. . .,Nt.

In general form, the dynamics of a set of Nv voxels may be

described by nonlinear multivariate autoregressions given as

JðtÞ ¼ FðJðt � 1Þ; Jðt � 2Þ; . . . ; Jðt � pÞ j JÞ þ hðtÞ ð14Þ

where p denotes the positive integer model order and h(t) denotes
dynamical noise, which we assume to be white and Gaussian with

zero mean and covariance matrix Cg ¼ EðhhyÞ. When fitting such

models to given data, h(t) represents a time series of innovations,

i.e., components of the data that cannot be explained from the

dynamics itself. It is the aim of modelling to find dynamical

models that produce a Gaussian white innovation time series, such

that the process of modelling can be regarded as ‘‘temporal

whitening’’.

F denotes a function describing the deterministic part of the

dynamics; it may depend on a vector of parameters J. This function
may contain considerable internal complexity and a huge number

of parameters (described by J), since it maps an input space of

dimensionality 3Nvp to an output space of dimensionality 3Nv.

The simplest nontrivial example of the class of autoregressions

described by Eq. (14) is a linear multivariate autoregressive model

of first order (AR(1)):

JðtÞ ¼ AJðt � 1Þ þ hðtÞ ð15Þ

and here we note that the popular random-walk model is a special

case of this model, with A ¼ I3Nv. The parameter matrix A is of size
(3Nv) � (3Nv), which in our case is of the order of 108. This large

number of parameters is still far too high to be estimated from real

data; therefore we need additional reductions of model complexity.

Also, the practical application of Kalman filtering requires a

simplified model structure.

It is an arguably reasonable assumption that at short time scales,

the dynamics will be restricted to local neighbourhoods; that is,

each voxel will interact only with its direct spatial neighbours; in a

rectangular grid of voxels, there will be six direct neighbours for

each voxel, except for those at the boundaries of the gray-matter

parts of brain. Most elements of A become zero by this proposition.

The dynamical model for each voxel becomes

jðv; tÞ ¼ A1 jðv; t � 1Þ þ 1

6
B1

X
v VaNðvÞ

jðv V; t � 1Þ þ hðtÞ ð16Þ

where A1 and B1 now are the autoregressive parameter matrices (of

size 3 � 3) for self-interaction and nearest-neighbour interaction,

respectively, and NðvÞ denotes the set of labels of gray-matter

voxels that are direct neighbours of voxel v. If furthermore we

assume the absence of any interactions between the three projec-

tions of local current vectors (both within and between voxels) and

total spatial homogeneity and isotropy for all pairs of neighbouring

voxels (this assumption extending to the three vector projections as

well), we can ultimately reduce the number of parameters to two.

The dynamical model for each voxel becomes

jðv; tÞ ¼ a1I3 jðv; t � 1Þ þ b1

6
I3
X

vVaNðvÞ
jðvV; t � 1Þ þ hðtÞ ð17Þ

where I3 denotes the 3 � 3 identity matrix; now a1 and b1 are scalar

autoregressive parameters. This model implements complete sym-

metry between voxels and also between projections of local

currents; but clearly, this symmetry is not preserved by multipli-

cation with the lead field matrix K . As a consequence of this,

inverse solutions also will display nonsymmetric behaviour with

respect to voxels and projections.

The additional assumptions that are required to define the

simplest possible nontrivial dynamical model, given by Eq. (17),

are almost certainly without physiological justification, but never-

theless this oversimplification is necessary to design a tractable

algorithm as a starting point. As the next step, it becomes possible

again to consider generalisations, such as higher model order,

nonlinearities, or inhomogeneities; as a consequence, it may

become possible to describe more structure present in the data

by the dynamical model and to relegate less power from the data to

the time series of innovations h(t). Here the aim is that the values

in h(t) be as small as possible, contain as little correlation as

possible (i.e., being white noise) and have a distribution as close as

possible to a Gaussian.

As long as only nearest-neighbour interactions are allowed and

a high degree of spatial homogeneity and isotropy is maintained,

the number of unknown parameters can be kept small, and the

problem remains accessible for spatiotemporal Kalman filtering.

By increasing the model order to p, it becomes possible to

describe stochastic oscillations that may be present in the data;

although this case represents a generalisation of Eq. (15), it can

be incorporated into this equation by replacing the order-1 state

vector J(t) by ðJðtÞy; Jðt � 1Þy; . . . ; Jðt � pþ 1ÞyÞy , such that

formally the dynamics remains a linear autoregression of first

order.
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Eq. (17) can alternatively be written as

jðv; tÞ ¼ ða1 þ b1ÞI3 jðv; t � 1Þ

þ b1I3
1

6

X
vVaNðvÞ

jðvV; t � 1Þ

0
@

1
A� jðv; t � 1Þ

0
@

1
Aþ hðtÞ

ð18Þ

This equation shows more clearly that the dynamics at each voxel

is composed of two contributions, the first representing the

autoregressive dynamics of the voxel itself and the second repre-

senting small exogenous disturbances that partly are described as

pure noise and partly as the difference between the average of the

states of the neighbouring voxels and the state of the voxel itself.

The latter difference is the same as also used in the Hjorth source

derivation (Hjorth, 1980), but here we employ it directly in the

(three-dimensional) generator space (i.e., the voxel space) instead

of the (two-dimensional) electrode space.

From Eq. (18), it can be seen that our model corresponds to a

specific choice for the parameter matrixA, which can be expressed as

A ¼ ða1 þ b1ÞI3Nv
� b1L ð19Þ

where L is the discrete spatial Laplacian operator defined in Eq. (4).

This relation will become useful in the next section.

Finally, we would like to mention that there exists the possibility

of a direct generalisation of Eq. (18) to partial differential equation

models for the description of brain dynamics in continuous time

and space; recently, such models have been explored by various

authors (Jirsa et al., 2002; Robinson et al., 1997). In the continuous

case (with respect to both time and space), the second term on the

rhs of Eq. (18) (i.e., the term corresponding to the Laplacian)

becomes a second derivative with respect to space, while the two

terms jðv; tÞ � ða1 þ b1ÞI3 jðv; t � 1Þ can be interpreted as a first

derivative with respect to time; consequently, a standard diffusion

equation results. If a model of order p = 2 is chosen, there will also

be a second derivative w.r.t. time instead of the first derivative; in

this case, a standard wave equation results. These interpretations

render the model orders p = 1 and p = 2 particularly attractive.

Spatial whitening

Application of Kalman filtering to the full spatiotemporal

model as given by Eq. (15) would be infeasible in terms of

computational time and memory demands due to the huge size

of the parameter matrix A, i.e., if interactions between all pairs of

voxels have to be considered. In the preceding section, we have

suggested to decompose this high-dimensional filtering problem

into a collection of coupled low-dimensional local filtering prob-

lems, each centred at one individual voxel, as described by Eq.

(16); only by this decomposition the spatiotemporal filtering

problem becomes tractable. The low-dimensional systems remain

coupled through neighbourhood interactions, but at each voxel

these contributions are formally regarded as exogenous variables.

This decomposition approach is a central contribution of this paper.

To apply this decomposition to the dynamics, it is also

necessary that the dynamical noise covariance matrix Cg be a

diagonal matrix, as assumed in Eq. (3) for the case of the

observational noise covariance matrix Ce . But in the case of Cg ,

experience obtained from the analysis of real EEG time series has

shown that such assumption will typically not be justified, rather
the presence of nonvanishing instantaneous correlations at least

between neighbouring voxels—and therefore also between the

corresponding components of the dynamical noise—has to be

expected.

Therefore we need an instantaneous data transformation

J̃ ¼ TJ ð20Þ

such that in the corresponding dynamical model

J̃ðtÞ ¼ Ã J̃ðt � 1Þ þ h̃ðtÞ ð21Þ

the dynamical noise covariance matrix Cg̃ becomes diagonal (here

we are furthermore assuming that all elements on the diagonal of

Cg̃ are identical, a simplification that due to the large number of

voxels is necessary for practical implementation; again, this

assumption may be relaxed in future work):

Cg̃ ¼ r2
g̃I3Nv

ð22Þ

To find a simple but efficient transformation, we propose to

extend the concept of temporal whitening to the spatial domain. A

simple whitening approach in temporal domain is given by

differentiating the time series; we can perform a spatial differen-

tiating step (of second order) by applying the discrete Laplacian as

defined by Eq. (4) to the dynamical state J. Similar ideas for spatial

whitening in the context of dynamical inverse problems have also

been proposed by Baroudi et al. (1998).

It is reasonable to assume that very fast correlations, appearing

to be instantaneous with respect to the sampling time of the data,

will be confined to short distances, i.e., neighbouring voxels; the

Laplacian represents the easiest possible choice for removing these

correlations. We note that the same transformation is employed in

LORETA, but for a different purpose; nevertheless, this coinci-

dence provides useful additional interpretations, as will be shown

now.

If we choose T ¼ L, Eq. (21) yields

JðtÞ ¼ L�1ÃLJðt � 1Þ þ L�1 h̃ðtÞ ð23Þ

But due to Eq. (19) (which by definition also describes the

structure of Ã ), the matrices Ã and L commute, such that by

comparison with Eq. (15) we find that the choice T ¼ L corre-

sponds to hðtÞ ¼ L�1 h̃ðtÞ, and our assumption for the nondiagonal

dynamical noise covariance matrix becomes

Cg ¼ L�1Eðh̃h̃yÞðL�1Þy ¼ r2
g̃ðL

yLÞ�1 ð24Þ

By comparison with LORETA in its Bayesian interpretation

(see ‘‘The LORETA method’’), it can be seen, that rg̃ directly

corresponds to the hyperparameter s = re/k, such that s2 can be

interpreted as dynamical noise variance. This quantity is meaning-

ful also in the case of the instantaneous inverse problem and its

LORETA solution; the optimal regularisation parameter k becomes

a measure for the ratio between the observation noise variance and

the dynamical noise variance, as it should be.

If other dynamical models than described by Eq. (17) are

assumed, Ã and L will generally not commute. Other trans-

formations than the plain Laplacian L may then be needed for

perfect spatial whitening. But even in this case, L can be expected

to make Cg̃ ‘‘more diagonal’’ (i.e., reduce the size of the non-

diagonal elements, as compared to the diagonal elements), and for

this reason we will continue to employ it as spatial whitening

transformation.
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We remark that the appropriate choice of Cg̃ forms an important

part of the fitting of a dynamical model; therefore refinements of

our choice should be based on improvements of a suitable

statistical criterion, such as AIC (see ‘‘Parameter estimation’’).

The Laplacian serves only as a first approximation, but in future

research it should be explored, how Cg̃ can be adapted further to

specific data sets.

For the actual application of spatiotemporal Kalman filtering,

we will exclusively express the dynamics as J̃ðtÞ, i.e., using the

spatially whitened version. From now on we will omit the tilde.

Spatiotemporal Kalman filtering

Given the observation equation (Eq. (1)) and the dynamical

equation (in the case of a linear first-order autoregression Eq. (21)),

we could in principle apply Kalman filtering according to its usual

form; however, due to the very high dimensionality of the state

variable J, this would be infeasible. But by appropriate design of

certain modifications of the standard filtering procedure, it is

possible to decompose the very high-dimensional filtering problem

into a collection of coupled low-dimensional problems; the set of

these problems is labeled by the voxel label v, i.e., it represents the

spatial dimension of the problem. These modifications of the

standard Kalman filter procedure are not trivial, and we will defer

a detailed discussion to a later paper. Here we will only describe

the main points from the viewpoint of practical implementation.

Let ĵðv; t � 1 j t � 1Þ denote the estimate of the local current

vector at voxel v at time t � 1, i.e., the local state estimate, and

pðv; t � 1 j t � 1Þ the corresponding estimate of the local error

covariance matrix (a 3 � 3 matrix). The notation ĵðt1 j t2Þ (where
t1 z t2) represents the estimate of j at time t1, which is based on all

information having become available until (and including) time t2.

For each voxel, the local state prediction is then given by

ĵðv; t j t � 1Þ ¼ A1 ĵðv; t � 1 j t � 1Þ

þ 1

6
B1

X
v VaNðvÞ

ĵðv V; t � 1 j t � 1Þ ð25Þ

and the corresponding local prediction error covariance matrix can

be approximated by

pðv; t j t � 1Þ ¼ A1pðv; t � 1 j t � 1ÞAy1 þ r2
gI3 ð26Þ

Here we have assumed that the second term on the rhs of Eq. (25)

behaves like an exogenous variable, i.e., without contributing

significantly to the prediction error covariance; alternatively, we

may say that the covariance contribution from the neighbours is

included in the term r2
gI3, which can be done easily, since rg

2 results

from numerical optimisation for given data and filter implementa-

tion (see ‘‘Parameter estimation’’).

We remark that this approximation is not crucial for our

approach to spatiotemporal Kalman filtering, and a more explicit

expression for the prediction error covariance could be employed;

however, for typical systems, we expect that usually the second

term on the rhs of Eq. (25) (i.e., the neighbourhood contribution) is

considerably smaller than the first term (the local contribution), and

therefore the resulting error should be only minor, whereas the

computational expenses can be reduced noticeably by refraining

from evaluating the more explicit expression at each voxel.
The local state predictions ĵðv; t j t � 1Þ for all voxels form the

overall state prediction Ĵðt j t � 1Þ , from which the observation

prediction (for all electrodes) follows as

Ŷðt j t � 1Þ ¼ K̄ Ĵðt j t � 1Þ ð27Þ

The symbol K̄ stands for the product KL�1; multiplication by the

inverse of the Laplacian is needed due to the spatial whitening

approach described in ‘‘Spatial whitening’’. The actual observation

at time t is Y(t), and the observation prediction error results as

DYðtÞ ¼ YðtÞ � Ŷðt j t � 1Þ ð28Þ

We note that this multivariate time series represents the inno-

vations of the actual observations, as opposed to the innovations of

the (unobservable) system states, which have been denoted by h(t)
in Eq. (14). The corresponding observation prediction error co-

variance matrix can be approximated by

Rðt j t � 1Þ ¼
XNv

v¼1

K̄ðvÞpðv; t j t � 1ÞK̄ðvÞy þ r2
e Inc ð29Þ

Here the direct summation over voxels seems to provide the

appropriate generalisation of the standard expression to the spa-

tiotemporal case. The matrices K̄ðvÞ have been defined in ‘‘The

inverse problem of EEG generation’’; again the bar refers to the

fact that due to spatial whitening, we have to replace K by KL�1,

before extracting the columns referring to voxel v. The Kalman

gain matrix for voxel v follows as

gðv; tÞ ¼ pðv; t j t � 1ÞK̄ðvÞyRðt j t � 1Þ�1 ð30Þ

and finally the local state estimation and the corresponding local

estimation error covariance matrix are given by

ĵðv; t j tÞ ¼ ĵðv; t j t � 1Þ þ gðv; tÞDYðtÞ ð31Þ

and

pðv; t j tÞ ¼ ðI3 � gðv; tÞK̄ðvÞÞpðv; t j t � 1Þ ð32Þ

respectively. For Eqs. (29) and (32), again we make use of similar

approximations as also employed in the case of Eq. (26).

This set of equations constitutes the new spatiotemporal Kal-

man filter. It should be stressed that Eqs. (25), (26), (30), (31) and

(32) are applied locally to each voxel, whereas only Eq. (27) re-

quires a large-scale multiplication of the lead-field matrix K̄ with

the full (3Nv)-dimensional state vector Ĵ.
For practical application of this filter to time series data, initial

values j(v,1j1) and pðv; 1 j 1Þ are needed. As initial state estimates

j(v,1j1), we propose to use solutions provided by the LORETA

algorithm, as presented in ‘‘The LORETA approach’’; the hyper-

parameters are chosen by minimisation of ABIC. For this purpose,

we have to sacrifice the first p data points and exclude them from

the Kalman filtering process. As a further refinement step, these

initial values are improved by likelihood maximisation (Ozaki et

al., 2000) in the same way as also the parameters are estimated; this

will be discussed in ‘‘Parameter estimation’’. Since it is impracti-

cable to perform this optimisation directly in the (3Nv)-dimensional

state space, we apply the optimisation to the (ncp)-dimensional

observation space of the first p observations Y(1),. . .,Y( p) and use

the LORETA technique for mapping points in the observation

space to new prospective initial states. Concerning the choice and

optimisation of initial values, our implementation differs from
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more conventional applications of Kalman filtering, which usually

do not employ this extended estimation approach.

According to our experience, the choice of initial values for

pðv; 1 j 1Þ is not critical; unity matrices can be used.

Estimation of the covariance matrix of the estimated state vector

Eq. (32) provides us with covariance estimates for the recon-

structed states (given by Eq. (31)); we may use these estimates as a

measure for the error of each component of the estimated state

vectors. Due to the spatial whitening transformation (see ‘‘Spatial

whitening’’) the covariance matrix of the actual currents is given

by

C
ðdISÞ
L�1 Ĵ

¼ L�1Pðt j tÞðLyÞ�1 ð33Þ

where the superscript (dIS) denotes ‘‘dynamical inverse solution’’.

By Pðt j tÞ the complete covariance matrix of the estimated states is

denoted, i.e., a 3Nv � 3Nv matrix the diagonal of which consists of

the pðv; t j tÞ matrices given by Eq. (32) for each voxel. The

remaining elements of Pðt j tÞ are filled with zeros, according to

our decomposition approach for this high-dimensional filtering

problem.

The diagonal elements of C
ðdISÞ
L�1 Ĵ

provide time-dependent var-

iances for each element of the complete estimated state vector L�1Ĵ

(again the premultiplication with L�1 is necessary due to spatial

whitening). As also in the case of the LORETA inverse solutions,

we will present variances of the modulus ĵðv; t j tÞ of local vectors
ĵðv; t j tÞ ; see Eq. (A6) in the Appendix for the appropriate

expression from Gaussian error propagation.

Silent and observable sources

In the (instantaneous) inverse problem of EEG generation we

are facing the apparently hopeless task to estimate a set of more

than 104 unknown quantities from usually less than 102 observa-

tions. As a condition for identifying a unique solution, additional

constraints have to be defined and imposed, such as the smooth-

ness constraint of LORETA. Such constraints may succeed to

render the inverse problem well-posed, but at the cost of a lack of

justification, e.g., in terms of physiology.

The inherent predicament of inverse problems, i.e., the very

unfavourable ratio between the numbers of known and of un-

known quantities, is avoided, but not solved by such constraints.

The central question remains unsolved: How can we expect that

all relevant information about the spatially distributed primary

current density could be reconstructed from a small number of

surface measurements? In this section, we will try to outline an

answer to this question for the case of the dynamical inverse

problem.

The problem can be expressed in quantitative form by consid-

ering the observation equation (Eq. (1)) and the singular value

decomposition of the lead field matrix (Eq. (8)):

YðtÞ ¼ K̄JðtÞ þ :ðtÞ ¼ USVyJðtÞ þ :ðtÞ ¼ USHðtÞ þ :ðtÞ ð34Þ

Here we have defined HðtÞ ¼ VyJðtÞ , i.e., we have applied an

orthogonal transform to the state vector J(t). As mentioned already

in ‘‘The LORETA approach’’, the nc � 3Nv matrix S is composed

of a nc � nc diagonal matrix containing the singular values (which
are all nonzero since the lead field matrix has full rank), while the

remaining (3Nv � nc) columns contain only zeros. Therefore only

the subspace spanned by the first nc elements of the transformed

state vector H(t) is mapped to the observation vector Y(t), while the

subspace of the remaining elements is completely ignored. Com-

ponents of the ‘‘true’’ state J(t), which by the orthogonal transfor-

mation are mapped into the former subspace, represent

‘‘observable sources’’, whereas those components that are mapped

completely into this latter subspace cannot be observed, whence

they are termed ‘‘silent sources’’ (note that such ‘‘sources’’ are not

localised in physical space). Within the framework of the instan-

taneous inverse problem, there exists no way to obtain information

about these state components.

Here we would like to argue that the situation is much different

in the case of the dynamical inverse problem. If the problem of

estimating unobserved quantities is treated in a state space frame-

work, it can be easily shown that under certain circumstances

information from the subspace of silent sources will propagate into

the subspace of observable sources.

To demonstrate this effect, we now apply the orthogonal

transformation HðtÞ ¼ VyJðtÞ to Eq. (15) and obtain

HðtÞ ¼ VyAVHðt � 1Þ þ VyhðtÞ ¼ ĂHðt � 1Þ þ h̆ðtÞ ð35Þ

where Ă and h̆ðtÞ denote the transformed transition matrix and

the transformed dynamical noise vector, respectively. Let HðtÞ ¼
ðHð1ÞðtÞyHð2ÞðtÞyÞy, such that H(1)(t) denotes the first nc elements

of the vector H(t) and H(2)(t) the remaining elements. Then,

H(1)(t) represents the subspace that is mapped to the observations,

i.e., the subspace of observable sources, while H(2)(t) represents

the subspace of silent sources.

The same subdivision is also applied to the transformed

transition matrix Ă:

Hð1ÞðtÞ

Hð2ÞðtÞ

0
B@

1
CA ¼

Ăð1;1ÞĂð1;2Þ

Ăð2;1ÞĂð2;2Þ

0
B@

1
CA Hð1Þðt � 1Þ

Hð2Þðt � 1Þ

0
B@

1
CAþ h̆ðtÞ ð36Þ

such that Ăð1;1Þ and Ăð2;2Þ are nc � nc and (3Nv � nc) � (3Nv � nc)

matrices, respectively. From this equation, it can be seen that the

‘‘partial’’ transition matrix Ăð1;2Þ plays a crucial role, since it maps

the subspace of silent sources to the subspace of observable

sources. It is through this pathway that information from the silent

sources is propagated into the observable sources, and from there

into the observations.

Obviously, this propagation of information will not take place if

Ăð1;2Þ ¼ 0. On the contrary, to have information from all elements

of H(2)(t) be propagated into H(1)(t) each column of Ăð1;2Þ must

contain at least one nonzero element. Now consider the special

case of A ¼ I3Nv
, i.e., a random-walk type dynamics without

neighbour interactions. Then, Ă ¼ VyAV ¼ VyV ¼ I3Nv
and con-

sequently Ăð1;2Þ ¼ 0 . This argument may seem elementary and

straightforward, but given the number of applications of Kalman

filtering, which still apply random-walk-type dynamical models

without any specific justification, it may nevertheless deserve more

attention.
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If, on the other hand, we choose a transition matrix with

nondiagonal elements, such as given by Eq. (19), VyAV will not

be diagonal and Ăð1;2Þp0. Using the partition of V into Vð1Þ and Vð2Þ,
as defined in ‘‘The LORETA approach’’, it can be seen that

Ăð1;2Þ ¼ ðVð1ÞyAÞVð2Þ ð37Þ

Due to the orthogonality of V, we have Vð1ÞyVð2Þ ¼ 0, i.e., the

columns of Vð1Þ are orthogonal to the columns of Vð2Þ ; but

multiplication by a nondiagonal matrix A will replace the columns

of Vð1Þ by a set of nc different columns that generically are no

longer orthogonal to any of the columns of Vð2Þ . Therefore we

presume that generically all elements of Ăð1;2Þ will be nonzero.

Consequently, we expect that there will be a flow of information

from all elements of H(2)(t) into H(1)(t).

This argument shows that only by using a dynamical model

including nonvanishing neighbour interactions, state components

belonging to the subspace of silent sources become accessible for

reconstruction by the spatiotemporal Kalman filter.

Observability in state space models of brain dynamics

In the previous section, we have given a heuristic derivation of

the mechanism by which the spatiotemporal Kalman filtering

approach is capable of accessing information about unobservable

state components; now we would like to mention that there exists a

rigorous theory addressing the question of whether for a given

model of the dynamics and the observation the unobserved

quantities can be reconstructed. This theory is built around the

central concepts of observability and controllability (Kailath, 1980;

Kalman et al., 1969). Assume that we are dealing with a dynamical

system that evolves according to linear dynamics as described by

Eq. (15) (with a constant transition matrix A ), and that we are

observing this system through an observation equation like Eq. (1)

(with a constant observation matrix K̄ ). If it is possible to

reconstruct the true states of the system from the observations,

the pair ðA; K̄Þ is said to be ‘‘observable’’.

Various tests for observability of dynamical systems have been

suggested. A well-known test states that the pair ðA; K̄Þ is

observable, if and only if the observability matrix O, being defined

by

O ¼ ½K̄y AyK̄y ðAyÞ2K̄y . . . ðAyÞ3Nv�1K̄y�y ð38Þ

has full rank, rank ðOÞ ¼ 3Nv (Kailath, 1980). Here Nv denotes the

dimension of the state vector, i.e., the number of unknown

quantities. In the case of the dynamical inverse problem of EEG

generation, this matrix has the size 3Nvnc � 3Nv = 185,382 �
10,299 (when using the corresponding values of the spatial

discretisation as employed in this paper), which is by far too large

for numerical calculation of the rank. Kalman filtering and observ-

ability theory are usually not applied to problems of this size. For

this reason, we are currently not yet able to present a rigorous proof

of observability for our algorithm.

On the other hand, observability constitutes the essential

precondition for the reconstruction of the unobserved states by

Kalman filtering, i.e., for the identification of a unique inverse

solution. In the remainder of this paper, we will demonstrate by

application to simulated and to real EEG data that Kalman filtering

can be applied successfully to the dynamical inverse problem of

EEG generation. For this reason, we presume that, effectively,
observability of the pair ðA; K̄Þ is given. Future research may

succeed in rigorously proving observability.

Parameter estimation

The general autoregressive model described by Eq. (14)

depends on a parameter vector J; in the largely simplified model

given by Eq. (17), we have J = (a1,b1), and autoregressive

models of higher order have J = (a1,. . .,ap,b1,. . .,bq); here we are

permitting the possibility of choosing p p q, i.e., choosing

different autoregressive model orders for self-interaction and

nearest-neighbour interaction.

Usually, there will be no detailed prior knowledge about

appropriate values for these parameters available. Furthermore,

we need estimates for the variances re
2 and rg

2, as defined by Eqs.

(3) and (24).

Estimates for these dynamical parameters and variances should

be obtained preferably from actual data. This can be accomplished

within the framework of spatiotemporal Kalman filtering by

likelihood maximisation. So far, to the best of our knowledge,

no successful applications of the principle of likelihood max-

imisation to the field of inverse problems have been reported;

recently, Phillips et al. (2002) have presented an approach involv-

ing restricted maximum likelihood, but their approach does not

involve dynamical modelling.

Assume that an EEG time series Y(t) is given, where t =

1,2,. . .,Nt. At each time point, the Kalman filter provides an

observation prediction ŶðtÞ , given by Eq. (27), and hence also

observation innovations DY(t); if for these a multivariate Gaussian

distribution with mean ŶðtÞ and covariance matrix Rðt; j t � 1Þ is
assumed, the logarithm of the likelihood (i.e., log-likelihood)

immediately results as

logLðJ; r2
e ; r

2
gÞ ¼ � 1

2

XNt

t¼1

ðlogARðt j t � 1ÞA

þ DYðtÞyRðt j t � 1Þ�1
DYðtÞ þ nclogð2pÞÞ

ð39Þ

Here |.| denotes matrix determinant. The log-likelihood is

known to be a biased estimator of the expectation of Boltzmann

entropy (Akaike, 1985); only a small further step is needed for the

calculation of an improved unbiased estimator of (�2) times

Boltzmann entropy, the well-known Akaike Information Criterion

(AIC) (Akaike, 1974):

AICðJ; r2
e ; r

2
gÞ ¼ �2logLðJ; r2

e ; r
2
gÞ þ 2ðdimðJÞ þ 2Þ ð40Þ

where dim(J) denotes the number of parameters contained in the

parameter vector J; it is further increased by 2 due to the need to fit
re
2 and rg

2 from the data.

The AIC can also be interpreted as an estimate of the distance

between the estimated model and the unknown true model; the true

model will remain unknown, but by comparison of the AIC values

for different estimated models it still becomes possible to find the

best model. Consequently, a well-justified and efficient tool for

obtaining estimates for unknown parameters consists of minimis-

ing the AIC; also the effect of changing the structure of the model

itself can be evaluated by monitoring the resulting change of the

AIC.
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As already mentioned in ‘‘Spatiotemporal Kalman filtering’’,

the same approach is also applied to the estimation of improved

initial values for the state, Ĵð1 j 1Þ, to be used by the Kalman filter.

Furthermore, it is also possible to compare instantaneous

inverse solutions obtained by LORETA with dynamical inverse

solutions obtained by spatiotemporal Kalman filtering by directly

comparing the corresponding values of ABIC (given by Eqs. (10)

and (11)) and AIC. Theoretical support for this direct comparison

of ordinary likelihood and type II likelihood in modelling has been

provided by Jiang (1992).
Application to simulated EEG

Spatial discretisation

This study employs a discretisation of brain into voxels, which

is based on a grid of 27 � 23 � 27 voxels (sagittal � axial �
coronal). Out of these 16,767 grid positions, 8723 represent voxels

actually covering the brain (and part of the surrounding tissue), out

of which 3433 are regarded as gray-matter voxels belonging to the

cortex; deeper brain structures, like thalamus, are not considered in

this study. For the underlying brain geometry and the identification

of the cortical gray-matter voxels, an averaged brain model was

used, which was derived from the average Probabilistic MRI Atlas

produced by the Montreal Neurological Institute (Mazziotta et al.,

1995). More details on this model can be found in Bosch-Bayard et

al. (2001) and references cited therein.

Design of simulation

We shall now present some results of applying the spatiotem-

poral Kalman filter, as presented in ‘‘Spatiotemporal Kalman

filtering’’ and ‘‘Parameter estimation’’, to time series data. It is a

well-known problem of all algorithms providing inverse solutions

that it is difficult to perform meaningful evaluations of the results

and the performance, since for such evaluation we would need to

know the true sources.

Inverse solutions obtained from real EEG time series typically

display fluctuating spatiotemporal structures, but it is usually not

possible to ascertain a posteriori to which extent these structures

describe the true brain dynamics, which was present during the

recording. Relative comparisons between inverse solutions can be

performed by comparing the corresponding values of AIC (see Eq.

(40)), providing us with an objective criterion for model selection.

For the purpose of evaluation of algorithms, it is furthermore

possible to employ simulated data. If the primary currents at the

gray-matter voxel sites are simulated, the corresponding EEG

observations can be computed simply by multiplication with the

lead field matrix, and consequently both the EEG time series and

its true sources are known. But clearly, these ‘‘true’’ sources will

not represent any realistic brain dynamics, and also the underlying

models for the brain and the observation will contain severe

simplifications and inaccuracies. Nevertheless, for the purpose of

demonstrating feasibility and potential usefulness of the proposed

algorithm, and for comparing inverse solutions obtained by differ-

ent algorithms, we will now design a very simple simulated brain

dynamics; results for real EEG data will be shown in ‘‘Application

to clinical EEG’’.

A typical phenomenon of human brain dynamics is the pres-

ence of strong oscillations within local neighbourhoods, e.g., alpha
activity in the visual cortex. If we regard the ‘‘simple’’ dynamical

model described by Eq. (17), where the parameters a1 and b1 are

constant, as a device to generate simulated brain dynamics, driven

by Gaussian white noise, we find that it will not produce such

oscillations. To have oscillating behaviour in linear autoregressive

models, a model order of at least p = 2 is needed. Alternatively the

desired oscillation can be generated separately and imposed onto

the brain dynamics through modulation of the system parameters.

We will make use of this second alternative now.

By considering Eqs. (15) and (19), it can be seen that the

stability condition for the dynamical model described by Eq. (17) is

approximately given by

a1 þ b1 < 1 ð41Þ

If we choose to keep b1 constant and let a1 depend explicitly on

time by

a1ðtÞ ¼ acð1þ assinð2pftÞÞ ð42Þ

and choose the parameters b1, ac and as such that a1 + b1 will

repeatedly become larger than unity, we have defined a transiently

unstable system. If this modulation of the parameter a1 is confined

only to those gray-matter voxels within a limited area of brain, this

area will become a source of oscillations that spread out into

neighbouring voxels. In this simulation, we do not add dynamical

noise, i.e., we are employing a linear, deterministic, explicitly time-

dependent model. Alternatively, the periodicity could also be

generated by introducing additional state variables.

We define two areas in brain as centres for the generation of

alpha-style oscillations, one in frontal brain and one in occipital

brain. Each area is spherical and contains about 100 voxels; despite

using equal radii the number is slightly different in both areas due

to different content of non-gray-matter voxels. We choose the

parameters ac, as, b1 and f differently for both areas: The occipital

oscillation has f = 10.65 Hz, and the frontal oscillation has f = 8.05

Hz (assuming a sampling rate of 256 Hz). Careful choice of these

parameters is necessary to obtain at least approximate global

stability of the simulated dynamics. We choose for the occipital

oscillation ac = 0.7, as = 0.75 and b1 = 0.3, and for the frontal

oscillation ac = 0.9, as = 0.5 and b1 = 0.1. In this simulation, the

orientation of all vectors is the y-direction (which is the vertical

direction according to the usual biometrical coordinate system for

the human head); although the length of the vectors changes with

time, their direction remains constant, and furthermore inversions

of direction never occur. When simulating the system, an initial

transient is discarded, and a multivariate time series of Nt = 512

points length is recorded. It represents the spatiotemporal dynamics

of this simulation, i.e., for each of the Nv = 3433 voxels a 3-variate

time series for the local current vector is recorded.

By multiplication by the lead field matrix according to Eq. (1),

we create artificial EEG recordings from this simulated dynamics;

we assume a standard recording according to the 10–20 system,

average reference and a sampling rate of 256 Hz, i.e., with a length

of the simulated time series of Nt = 512, 2 s of EEG can be

represented. A small amount of Gaussian white observation noise

is added to the pure EEG data (signal-to-noise ratio 100:1 in terms

of standard deviations). The resulting EEG time series are shown in

Fig. 1. As can be seen, they clearly display the two oscillations

with their different frequencies, but in a quite blurred fashion. Note

that due to the uniform vertical orientation of all current vectors in



Fig. 1. Simulated EEG recording for 18 standard electrodes according to the

10–20 system (PZ has been omitted); electrode abbreviations are given on

the vertical axis. The EEG potential is measured in arbitrary units versus

average reference of 19 electrodes (including PZ); time is measured in

seconds, assuming a sampling rate of the simulated dynamics of 256 Hz.
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both hemispheres, also the EEG displays complete symmetry with

respect to the left (corresponding electrodes have labels with odd

numbers) and the right hemisphere (even numbers). Out of the

three electrodes on the border between hemispheres, FZ, CZ and

PZ, the latter has been omitted due to usage of average reference

(see ‘‘The inverse problem of EEG generation’’).

The design of this simulation still contains many unrealistic

elements and simplifications even beyond the intrinsic limitations

of our dynamical model class, e.g., by omitting dynamical noise

and assuming a uniform direction of all local vectors; also the

assumption of Gaussian white observation noise may be question-

able. In future work, we intend to design more realistic simulations

of brain dynamics and to present detailed results on the perfor-

mance of different estimators of inverse solutions with respect to

various design parameters.

Calculation of inverse solutions

For the EEG data shown in Fig. 1, we compute three inverse

solutions: a ‘‘timeframe-by-timeframe’’ instantaneous inverse so-

lution (using regularised LORETA), which shall be abbreviated as

‘‘iIS’’; a dynamical inverse solution by using the spatiotemporal

Kalman filter, as described in ‘‘Spatiotemporal Kalman filtering’’

and ‘‘Parameter estimation’’, employing the simplest possible

dynamical model, as given by Eq. (17), which shall be abbreviated

as ‘‘dISs’’; and a dynamical inverse solution using the spatiotem-

poral Kalman filter, but employing the correct dynamical model,

i.e., a ‘‘perfect’’ model, which shall be abbreviated as ‘‘dISp’’.

For the application of the Kalman filter in the case of the

simplest model, four parameters (a1, b1, re
2, rg

2) have to be chosen

according to the principle of maximum likelihood, i.e., by mini-

mising Eq. (39). This optimisation poses no particular problems,

apart from the usual problems related to nonlinear optimisation,

such as local minima and high computational time consumption; it

even turns out that the likelihood as a function of these parameters

behaves quite smoothly. During the first part of the parameter

optimisation, it is advisable to allow for a transient of the Kalman
filter itself to die out, before the likelihood is evaluated; only after

optimising the estimate of the initial state the possibility of

transients can be neglected. In our numerical simulation study

maximum likelihood estimation of the unknown parameters (a1,b1,

re
2, rg

2) yields the values (0.7875, 0.2182, 4.8255, 1.4879 � 10�6).

These values are to be compared with the correct values for ac, as
and b1 given in the previous subsection. Since in this simulation,

the model was deterministic, the dynamical noise covariance rg
2

should be expected to be zero; but in this case the Kalman filter

was given a wrong model for the dynamics, consequently devia-

tions of the actual observations from the predictions are interpreted

as the result partly of observation noise and partly of stochastic

elements in the dynamics.

In this simulation, the dynamical model is ignoring two

important aspects of the true dynamics, namely the fact that the

autoregressive parameter a1 is behaving differently for different

groups of voxels, and that it shows explicit dependence on time for

two groups of voxels. The dynamical model given by Eq. (17) is

very primitive, and therefore it provides almost no additional

information that could be used for the purpose of estimating an

improved inverse solution.

As a contrast to this, we are also providing the same spatio-

temporal Kalman filter with perfect knowledge about the true

dynamics, i.e., not only does the filter know the correct values of

the parameters as used in generating the simulated data, but also

the information about the explicit time-dependence of a1(t) for the

two oscillating areas and the correct assignment of the voxels to

these areas are given to the filter. Nevertheless, also in this case a

maximum likelihood optimisation step is employed to obtain

estimates for (re
2, rg

2). The results are (0.156, 10�7); now the

estimate for the observation noise covariance is considerably

smaller, compared to the case of the simplest model, while the

dynamical noise covariance almost vanishes.

Comparison of inverse solutions

The three different inverse solutions that we have obtained are

given as functions of space and time, ĵðv; tÞ. We can compare them

with the true solution (i.e., the simulated dynamics) j(v,t) by

forming a RMS error according to

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NvNt

X
v

X
t

ð ĵðv; tÞ � jðv; tÞÞ2
s

ð43Þ

This comparison yields (for observation noise with SNR =

100:1) E = 1.4391 for iIS, E = 1.3932 for dISs and E = 0.4813 for

dISp. These results indicate that, compared to iIS, dISs achieves

only a small improvement, if any, but using dISp, i.e., knowing the

perfect model, a much better estimation of the currents becomes

possible.

We remark that these figures deteriorate only slowly, if the

amount of observation noise is increased: for SNR = 100:5 we find

E = 1.4487 (iIS), E = 1.4030 (dISs) and E = 0.5459 (dISp); for

SNR = 100:10 we find E = 1.4782 (iIS), E = 1.4332 (dISs) and E =

0.7151 (dISp). A more detailed study of the influence of observa-

tion noise on inverse solutions will be the subject of future work.

Obviously, this type of evaluation is possible only in the case of

numerical simulations. A direct comparison of the three inverse

solution without knowledge of the true solution can be performed

by comparing the corresponding values of AIC, as given by Eq.

(40), or ABIC, as given by Eqs. (10) and (11). For iIS, we obtain
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ABIC = 110,042.1, for dISs AIC = 75,549.0 and for dISp AIC =

61,936.7. The absolute values depend on the length of the data set

(Nt = 512 in this case), therefore they are less relevant; but by

comparison, we see again that both dynamical inverse solutions, as

provided by Kalman filtering, represent better explanations of the

observations than the instantaneous inverse solution, and that dISp

is superior to dISs, as should be expected.

In Figs. 2 and 3, we present some graphical illustrations of the

inverse solutions obtained in this simulation. Fig. 2 shows the

spatial distribution of true currents and inverse solutions at a fixed

moment in time by displaying the maximum-intensity projection of
Fig. 2. Gray-scale coded representation of maximum-intensity projection of the thr

matter voxels of a model brain at a fixed point in time, using coronal projection (

column). Subfigures A1, A2, A3 show the original current vectors used in the simu

to the instantaneous inverse solution (LORETA); subfigures C1, C2, C3 show the

the simplest dynamical model; and subfigures D1, D2, D3 show the estimated cu

dynamical model.
the absolute values of the local current vectors by a gray-scale

coding. Directions of vectors are not shown, since they were not

allowed to vary in the simulation; but a closer analysis confirms

that for all three inverse solutions the directions of most current

vectors are correct and constant with respect to time.

For each case, coronal, axial and sagittal projections of the

spatial distribution of currents are shown. In subfigures A1, A2 and

A3, the true currents from the simulated dynamics are shown. The

two centres of simulated alpha activity can be seen clearly; most

other areas of the brain remain inactive. The frontal centre shows a

certain tendency to produce two neighbouring maxima of activity.
ee-dimensional field of absolute values of local current vectors for the gray-

left column), axial projection (middle column) and sagittal projection (right

lation; subfigures B1, B2, B3 show the estimated current vectors according

estimated current vectors according to the dynamical inverse solution using

rrent vectors according to the dynamical inverse solution using the perfect



Fig. 3. Vertical (axial) component of local current vectors for a voxel in right medial frontal gyrus (left column of subfigures) and for a voxel in left superior

frontal gyrus (right column of subfigures) versus time, based on inverse solutions obtained from the simulated EEG recording shown in Fig. 1. Subfigures A1,

A2 show values from the original current vectors used in the simulation; subfigures B1, B2 show results from estimated current vectors according to the

instantaneous inverse solution (LORETA); subfigures C1, C2 show results from estimated current vectors according to the dynamical inverse solution using the

simplest dynamical model; and subfigures D1, D2 show results from estimated current vectors according to the dynamical inverse solution using the perfect

dynamical model. Thick lines represent the estimates, while thin lines represent error intervals (95% confidence profiles). Note the different scale on the vertical

axis for subfigures of left and right columns.
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Subfigures B1, B2, B3 show the estimated currents according

to iIS. It can be seen that the locations of the two main centres of

activity are correctly reconstructed, but these two centres are much

less focussed than in subfigures A1, A2, A3, rather does the active

area spread out over most parts of the brain; in particular, we see

spurious structure extending into the temporal lobes. This lack of

spatial resolution is a characteristic artifact of the underdetermined

situation given in this inverse problem; we remark that there exists

a suggestion for generating more focal inverse solutions from an

instantaneous method by iterative reweighting (Gorodnitsky et al.,

1995).

Subfigures C1, C2, C3 show the estimated currents according to

dISs. These results resemble to some extent those obtained by iIS

(subfigures B1, B2, B3). This similarity, which is also found in the

temporal domain (as shown in Fig. 3), is remarkable, since these two

inverse solutions were obtained by completely different approaches,

penalised Least Square (which is the essence of the LORETA
approach) in the case of iIS and spatiotemporal Kalman filtering

in the case of dISs. But only the estimate of the initial state for the

Kalman filter was generated from iIS. The same phenomenon is also

found for inverse solutions obtained from real EEG data sets.

Subfigures D1, D2, D3 show the estimated currents according

to dISp. These results are much more similar to the true currents

(subfigures A1, A2, A3) than to dISs or iIS: the two centres of

activity are well focussed, and even a detail such as the presence of

two maxima in the frontal centre is reproduced. By this result, it is

illustrated again that this technique has achieved a very good

estimation of the sources. This success was obtained by knowing

only the (simulated) EEG recording from nc = 18 electrodes (as

shown in Fig. 1) and the correct dynamical model, including the

information about the time-dependency of the autoregressive

parameter a1 for certain groups of voxels. Results like this make

us presume that in this particular state space filtering problem the

condition of observability is fulfilled.



Fig. 4. Clinical EEG recording from a healthy child (8.5 years, awake, eyes

closed) for 18 standard electrodes according to the 10–20 system (PZ has

been omitted); electrode abbreviations are given on the vertical axis. The

EEG potential is measured in arbitrary units versus average reference of 19

electrodes (including PZ); time is measured in seconds; the sampling rate is

256 Hz.

Fig. 5. Observation prediction errors for the EEG recording shown in Fig. 4,

generated by a dynamical inverse solution based on a second-order

autoregressive model. The scale on the vertical axis has been enlarged by a

factor of 2.7, as compared to Fig. 4.
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Fig. 3 shows the time series of the vertical components of true

currents and inverse solutions for two selected voxels, namely a

voxel in the right medial frontal gyrus, situated in the middle of the

frontal centre of alpha activity (left column of subfigures), and a

voxel in the left superior frontal gyrus (right column of subfig-

ures); only half of the data points is shown, i.e., the first 256 data

points. In this figure, we also show error estimates according to

Eqs. (13) and (33) (plus/minus two standard deviations). Again,

the letters A, B, C and D refer to true currents, iIS, dISs and dISp,

respectively.

We have chosen to display the vertical component, since in this

simulation, the true current vectors were confined to the vertical

direction. It should be noted that for the time domain, the absolute

value of local current vectors is not an appropriate quantity for

representation of inverse solutions, since it does not contain

information about changes of direction of the vectors; this has

the effect that oscillations seem to have a doubled frequency, as

compared to the vector components.

In subfigure A1, we see the strong simulated alpha oscillation

of this voxel. It is reproduced by iIS and dISs (subfigures B1 and

C1), but its amplitude is significantly underestimated; error inter-

vals are larger for iIS than for dISs. In contrast to this, dISp

(subfigure D1) reproduces the correct amplitude of this oscillation

very well. During the first 0.5 s, the transient of the Kalman filter

can be clearly seen; in the remaining part of the data, the oscillation

of the estimated currents does not change its amplitude any more,

but stays very close to the true solution.

In subfigure A2, we see the true current of a voxel that does not

take part in any pronounced oscillation. The slight decrease of the

current with time still is a transient behaviour resulting from the
deterministic stable autoregressive dynamics, as employed in this

simulation. Subfigures B2 and C2 show, that iIS and dISs incor-

rectly assign a spurious oscillation to this voxel, whereas dISp

succeeds in approximately retrieving the correct dynamics: There

is no trace of spurious oscillations, and the correct solution is

within the error interval. This result again illustrates the much

sharper localisation that can be achieved by dISp.
Application to clinical EEG

Calculation of inverse solutions

We will now estimate inverse solutions for a time series

chosen from a clinical EEG recording. The data was recorded

from a healthy child of 8.5 years, in awake resting state with

eyes closed. Electrodes according to the standard 10–20 system

were used, the sampling rate was 256 Hz, and the resolution of

the AD conversion was 12 bit. A time series of 2 s length chosen

from the recording is shown in Fig. 4; this representation uses

average reference. As can be seen from the figure, this data set

displays characteristic alpha oscillations in the parietal and

occipital electrodes. This particular data set was chosen merely

as an example of typical clinical EEG data; in later studies, it will

be possible to investigate a wide range of neurological and

psychiatric diseases by this new technique for obtaining inverse

solutions.

Again, we compute a ‘‘timeframe-by-timeframe’’ instantaneous

inverse solution for this data set by using LORETA and two

dynamical inverse solutions by using spatiotemporal Kalman

filtering. Since in this case no additional information concerning

the true dynamics is available, we will use linear autoregressive

models with constant coefficients, as discussed in ‘‘Dynamical

models of voxel currents’’ and ‘‘Parameter estimation’’. A first-

order ( p = 1, q = 1) model will be used, according to Eq. (17); the

resulting inverse solutions shall be abbreviated as ‘‘dISs1’’. Fur-

thermore, a second-order model will be used, but only voxel self-
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interaction will be second order, while neighbour interaction will

remain first order ( p = 2, q = 1); this model results from adding an

additional term a2I3 jðv; t�2) in Eq. (17). The resulting inverse

solutions shall be abbreviated as ‘‘dISs2’’.

In the case p = 1, q = 1 maximum likelihood estimation of the

unknown parameters (a1, b1, re
2, rg

2) yields the values (0.7875,

0.2182, 4.8255, 1.4879 � 10�6), and for p = 2, q = 1 we find (a1,

a2, b1, re
2, rg

2) = (0.9923, �0.7101, 0.7993, 3.3412, 1.0507). These

solutions may not yet represent global maxima, but we believe that

they correspond to inverse solutions whose properties are qualita-

tively similar to those of the global solution.

Comparison of inverse solutions

Unlike with the simulation study of ‘‘Application to simulated

EEG’’, we are in this case unable to compare the inverse solutions

directly with the true solution; consequently, they have to be

evaluated and compared by statistical criteria. For the instanta-

neous solution (iIS), we obtain ABIC = 112,328.4, while for the

dynamical inverse solution with p = 1, q = 1 (dISs1) we obtain
Fig. 6. Gray-scale-coded representation of maximum-intensity projection of the thr

matter voxels of a model brain at a fixed point in time, using coronal projection (

column), based on inverse solutions obtained from the EEG recording shown in Fi

the instantaneous inverse solution (LORETA); subfigures C1, C2, C3 show the es

first-order autoregressive model; and subfigures D1, D2, D3 show the estimated c

order autoregressive model.
AIC = 88,990.1 and for p = 2, q = 1 (dISs2) AIC = 87,131.3.

These values confirm again that the dynamical inverse solutions

represent better explanations of the observations than the

instantaneous inverse solution. We also see that increasing the

model order helps to further decrease the AIC, but at the

expense of a more time-consuming parameter estimation, due

to the increased dimensionality of the parameter space.

The results of this state estimation problem can be further

illustrated by showing in Fig. 5 the residuals of the data prediction,

i.e., the whitened time series (compare ‘‘Dynamical models of

voxel currents’’). The figure demonstrates the success of explain-

ing most of the structure in the observations through the dynamical

model; however, it can also be seen that some structure is

remaining, especially some components obviously belonging to

the alpha oscillation. Improved dynamical models will be required

to capture also these components.

In Figs. 6 and 7, we again present graphical illustrations of

spatial and temporal properties of the inverse solutions. Fig. 6

shows the spatial distribution of inverse solutions obtained by iIS

(subfigures B1, B2 and B3), dISs1 (subfigures C1, C2 and C3)
ee-dimensional field of absolute values of local current vectors for the gray-

left column), axial projection (middle column) and sagittal projection (right

g. 4. Subfigures B1, B2, B3 show the estimated current vectors according to

timated current vectors according to the dynamical inverse solution using a

urrent vectors according to the dynamical inverse solution using a second-



Fig. 7. Vertical (axial) component of local current vectors for a voxel in right cuneus (left column of subfigures) and for a voxel in right medial frontal gyrus

(right column of subfigures) versus time, based on inverse solutions obtained from the EEG recording shown in Fig. 4. Subfigures B1, B2 show results from

estimated current vectors according to the instantaneous inverse solution (LORETA); subfigures C1, C2 show results from estimated current vectors according

to the dynamical inverse solution using a first-order autoregressive model; and subfigures D1, D2 show results from the estimated current vectors according to

the dynamical inverse solution using a second-order autoregressive model. Thick lines represent the estimates, while thin lines represent error intervals (95%

confidence profiles).
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and dISs2 (subfigures D1, D2 and D3) at a fixed moment in time,

again by displaying the coronal, axial and sagittal maximum-

intensity projections of the absolute values of the local current

vectors.

From the figure, it can be seen that all three inverse solutions

locate a centre of activity in the occipital region, as should be

expected for EEG data displaying pronounced alpha activity in

parietal and occipital electrodes; in the dynamical inverse solu-

tions, this centre has larger amplitude and appears to be better

localised, compared with neighbouring brain areas. Together with

the superior values of AIC, this result seems to provide evidence

for improved resolution and localisation abilities of the dynamical

inverse solutions.

Fig. 7 shows the time series of the sagittal component of the

inverse solutions for two selected voxels, namely a voxel in the

right cuneus (i.e., in the occipital area; left column of subfigures)

and, as before, a voxel in the right medial frontal gyrus (right

column of subfigures). Error estimates are also shown. The letters

B, C and D refer to iIS, dISs1 and dISs2, respectively. Among

the three projections of the current vectors, for this data set, the

projection onto the sagittal direction showed the largest ampli-

tudes correlated to alpha activity; therefore, we have chosen to

present it.

In subfigures B1, C1, D1, we see for the occipital voxel a

pronounced oscillation representing the alpha activity in the first

half of this data set. All three inverse solutions reconstruct this

oscillation at this voxel, but again we notice that dISs1 and dISs2

find much higher amplitude than iIS. More importantly, the error

intervals of dISs1 and dISs2 are much smaller than those of iIS; in

fact, it turns out that the error estimates for the instantaneous

inverse solutions are so large that any deviation of the vector

component from zero has to be regarded as nonsignificant. Similar

remarks apply to subfigures B2, C2, D2, where dISs1 and dISs2
indicate the presence of a weak low-frequency wave, whereas iIS

fails to find any structure.

It is not the aim of this paper to discuss these results from a

physiological point of view, but primarily to present these new

tools for obtaining improved inverse solutions and to compare

them with a well-known representative of the currently available

algorithms, the LORETA method. In future work, it has to be

investigated in detail, in which respect dynamical inverse solutions

are capable of providing additional relevant information for the

analysis of brain dynamics and for the diagnosis of diseases

affecting the brain. In this paper, our claim of superiority of

dynamical inverse solutions over LORETA inverse solutions is

based on the relative comparison of values of the ABIC and AIC

criteria, regarded as a measure of distance between the estimated

model and the unknown true model.
Conclusion

In this paper, we have addressed the dynamical inverse problem

of EEG generation, being a generalisation of the more traditional

instantaneous problem of EEG generation, and we have presented

a new approach for estimating solutions of this problem from

actual EEG data. This approach is applicable also to MEG data and

to a wide class of other inverse problems arising in the analysis of

biomedical or other data. We have demonstrated how the standard

Kalman filter can be adapted to the case of spatiotemporal

dynamics; an essential precondition for this adaptation was the

concept of spatial whitening, which renders it possible to decom-

pose an intractable high-dimensional filtering problem into a set of

coupled low-dimensional problems that can be solved with mod-

erate computational effort. The application of Kalman filtering has

the additional benefit of providing estimates of the likelihood and
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consequently of the Akaike Information Criterion (AIC), which

serves as a well-justified tool for estimating parameters and

comparing dynamical models through the maximum likelihood

method. Furthermore, the Kalman filter provides error estimates for

the inverse solutions almost without the need for additional

computations.

We have demonstrated through numerical simulations that the

quality of the inverse solutions obtained by this new dynamical

approach crucially depends on the availability of appropriate

models for the spatiotemporal brain dynamics. If only a very

simple model is employed, the resulting inverse solution may not

offer much improvement over the results provided by instanta-

neous techniques (e.g., LORETA). But even this is remarkable,

since, as compared to the LORETA algorithm, our algorithm

applies completely different numerical procedures to the data.

We have explicitly shown why noncoupled random-walk models,

which are increasingly employed as ‘‘dynamical priors’’ in con-

strained least squares approaches to inverse problems, are inher-

ently insufficient as dynamical models within a high-dimensional

state space approach. Instead, we have suggested to incorporate the

identification of improved predictive models as a central element

into the dynamical inverse problem. The more elaborate a model is

applied, the more the resulting inverse solutions will differ from the

LORETA solution, and the better (in a statistical sense) it will be

able to explain the observed EEG data, as measured by the

improvement of the AIC value. In a numerical simulation, we

were able to employ a perfect model of the underlying dynamics,

and we have shown that the resulting inverse solution was very

similar to the true distribution of currents.

Perfect models are not available in the analysis of real EEG

data, but it can be expected that by using the maximum likelihood

method (or, more precisely, the method of minimising the AIC), it

will be possible to gradually adapt initially simple models to given

data, such that considerably improved models and consequently

improved inverse solutions can be obtained. These models them-

selves will be highly useful for purposes of investigating brain

dynamics and improving clinical diagnosis.

In this study, we have chosen to employ the class of multivar-

iate linear autoregressive models with constant parameters. The

choice of this particular class anticipates stationarity of the under-

lying dynamical processes. This assumption is almost never

fulfilled for the case of EEG time series, but may be permitted

for short time intervals of 1 or 2 s, as used in this study. Future

work will have to address this problem more thoroughly by

developing dynamical model classes that are sufficiently flexible

to cope with nonstationary data.

As a further advantage of the dynamical approach to estimating

inverse solutions, we would like to mention the possibility to

calculate spatial innovation maps by forming the differences

between predicted states (given by expressions such as Eq. (25))

and estimated states (given by Eq. (31)) for each voxel and each

vector projection. These innovations describe those components of

the spatiotemporal dynamics that could not be predicted by the

given dynamical model; therefore, they contain information either

about weaknesses of the employed dynamical model, or about

external forces and processes driving the dynamics. Such informa-

tion cannot be obtained by instantaneous techniques. These maps

may be particularly useful for localising points or areas within

brain that display atypical behaviour, such as epileptic foci; they

may also serve as a source of information for the analysis of the

long-range connectivity structure of brain.
It has to be admitted that, despite the decomposition approach for

rendering high-dimensional spatiotemporal filtering problems trac-

table, this technique still is much more demanding in terms of

computational time consumption than most instantaneous techni-

ques. Especially the step of parameter estimation through likelihood

maximisation may, depending on the model and the quality of the

initial estimates for the parameters, consume considerable amounts

of CPU time, since it constitutes a nonlinear optimisation task.

Future work will have to design efficient ways to perform this

optimisation. Furthermore, as also with many other nonlinear

optimisation problems, it may not be necessary to always find the

global minimumof the objective function (i.e., in our case theAIC as

a function of parameters). Seemingly very different sets of param-

eters may belong to dynamical models with very similar behaviour.

This can be seen from the parameter sets given in ‘‘Application to

clinical EEG’’ subsection ‘‘Calculation of inverse solutions’’.

Altogether, we expect that by reinterpreting the dynamical

inverse problem of EEG generation as a spatiotemporal filtering

problem, it will become possible to extract considerably more

relevant and useful information from EEG recordings than it has

been possible previously. Also, for the combination of EEG data

with data obtained by other techniques for recording temporally

and spatially resolved information related to brain dynamics, such

as MEG, fMRI and NIRS, this work holds the promise of opening

up new perspectives.
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Appendix A. Estimation of the covariance matrix of the

estimated state vector Ĵ (obtained from LORETA)

The covariance matrices of the (assumed) ‘‘true’’ state vector J

and of the corresponding EEG observation vector Y shall be

denoted by CJ and CY , respectively. From Eq. (1), we have

CY ¼ KCJKy þ C: ðA1Þ

In this paper, we are employing the assumptions (see Eqs. (3)

and (24))

CJ ¼ s2ðLyLÞ�1 ðA2Þ

and

C: ¼ r2
: Inc ðA3Þ

The estimated state vector is given by Eq. (6):

Ĵ ¼ ðKyK þ k2LyLÞ�1KyYzTðkÞY
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Then, the covariance matrix of the estimated state vector Ĵ is

given as

C
ðiISÞ
Ĵ

¼ TðkÞCYT
yðkÞ ðA4Þ

The product KCJKy in Eq. (A1) yields, using Eqs. (A2) and (8)

s2KðLyLÞ�1K ¼ s2ðKL�1ÞðKL�1Þy ¼ s2US2Uy

Using s = r/k and Eq. (A3), Eq. (A1) becomes

CY ¼ s2ðUS2Uy þ k2Inc Þ ðA5Þ

By inserting Eq. (9) for TðkÞ and Eq. (A5) for CY, we finally

can evaluate Eq. (A4); by rearranging terms, we obtain (using

orthogonality of U)

C
ðiISÞ
Ĵ

¼ s2L�1Vð1Þdiag
s2i

s2i þ k2

 !
Vð1ÞyðLyÞ�1

which is the desired result.

The diagonal elements of C
ðiISÞ
Ĵ

provide variances for each

element of the state vector J; since in our implementation, the

estimates for s and k result from an optimisation step applied to the

complete time series, these variances themselves will not depend

on time, unlike the state estimates Ĵ ¼ ĴðtÞ; if, however, variances
of the modulus j(v, t) of local vectors j(v,t) are computed, these will

become time-dependent through Gaussian error propagation:

r2
j ðv; tÞ ¼

1

j2ðv; tÞ

� ðjxðv; tÞrjxðvÞÞ
2 þ ðjyðv; tÞrjy ðvÞÞ

2 þ ðjzðv; tÞrjzðvÞÞ
2

� �
ðA6Þ

Alternatively, explicitly time-dependent local variances could be

obtained by repeating the optimisation on a moving window, but in

this paper we have not used this option.
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